login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193618
G.f. A(x) satisfies: A(x)^2 + A(-x)^2 = 2 and A(x)^-2 - A(-x)^-2 = -8*x.
10
1, 2, -2, -28, 54, 860, -2004, -33720, 86054, 1492908, -4019452, -71101832, 198310460, 3555617432, -10168382696, -184127171952, 536496907782, 9788598556876, -28937139277804, -531135371147368, 1588378827366868, 29295861148032584
OFFSET
0,2
COMMENTS
The unsigned version of this sequence, A246062, has g.f.: sqrt( (1 + sqrt(1+8*x)) / (1 + sqrt(1-8*x)) ).
LINKS
FORMULA
G.f.: ( 2*(sqrt(1+64*x^2) + 8*x)/(sqrt(1+64*x^2) + 1) )^(1/4).
G.f. A(x) = 1/G(x) where G(x) is the g.f. of A193619.
EXAMPLE
G.f.: A(x) = 1 + 2*x - 2*x^2 - 28*x^3 + 54*x^4 + 860*x^5 - 2004*x^6 +...
where
A(x)^2 = 1 + 4*x - 64*x^3 + 2048*x^5 - 81920*x^7 + 3670016*x^9 +...
and
A(x)^-2 = 1 - 4*x + 16*x^2 - 256*x^4 + 8192*x^6 - 327680*x^8 +...
PROG
(PARI) {a(n)=local(Ox=x*O(x^n), A=(2*(sqrt(1+64*x^2+Ox)+8*x)/(sqrt(1+64*x^2+Ox)+1))^(1/4)); polcoeff(A, n)}
(PARI) N=40; x='x+O('x^N); Vec(sqrt(2/(1-8*x+sqrt(1+64*x^2)))) \\ Seiichi Manyama, Aug 26 2020
CROSSREFS
Sequence in context: A121222 A125067 A369755 * A246062 A178955 A012000
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 01 2011
STATUS
approved