login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178955
E.g.f. is inverse of e.g.f. for Catalan numbers.
5
1, -1, 0, 1, 2, -2, -28, -65, 338, 3262, 4352, -113082, -879140, 1145012, 68641120, 409571279, -3075414734, -67796919090, -235926569056, 6635196777226, 98653814115636, -51631812077716, -17882630766156440, -190179698567684014, 1532579370407751292, 62028205219536446948, 405883930741148425152, -11224575706163698420700, -269584771812788695251352, -338220005828087037972744
OFFSET
0,5
REFERENCES
Anthony Mendes and Jeffrey Remmel, Generating functions from symmetric functions, Preliminary version of book, available from Jeffrey Remmel's home page http://math.ucsd.edu/~remmel/, see p. 130.
FORMULA
The e.g.f. is 1/(Sum_{n >= 0} (x^n/n!)*binomial(2n,n)/(n+1)).
CROSSREFS
See A178956/A178957 for the coefficients in the e.g.f. Cf. A000108, A144186/A144187.
Sequence in context: A369755 A193618 A246062 * A012000 A116091 A127262
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 31 2010
STATUS
approved