login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A178952
T(n,k)=Log base 2 of the number of nXk binary arrays with no element equal to the modulo 2 sum of its king-move neighbors
1
0, 1, 1, 0, 3, 0, 0, 3, 3, 0, 1, 4, 0, 4, 1, 0, 6, 0, 0, 6, 0, 0, 6, 3, 0, 3, 6, 0, 1, 7, 0, 4, 4, 0, 7, 1, 0, 9, 0, 0, 9, 0, 0, 9, 0, 0, 9, 3, 0, 6, 6, 0, 3, 9, 0, 1, 10, 0, 4, 7, 0, 7, 4, 0, 10, 1, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 12, 3, 0, 9, 6, 0, 6, 9, 0, 3, 12, 0, 1, 13, 0, 4, 10, 0, 7, 7, 0, 10, 4
OFFSET
1,5
COMMENTS
Table starts
.0..1.0.0..1.0.0..1.0..0..1..0..0..1..0..0..1..0..0..1..0..0..1..0..0..1..0..0
.1..3.3.4..6.6.7..9.9.10.12.12.13.15.15.16.18.18.19.21.21.22.24.24.25.27.27.28
.0..3.0.0..3.0.0..3.0..0..3..0..0..3..0..0..3..0..0..3..0..0..3..0..0..3..0..0
.0..4.0.0..4.0.0..4.0..0..4..0..0..4..0..0..4..0..0..4..0..0..4..0..0..4..0..0
.1..6.3.4..9.6.7.12.9.10.15.12.13.18.15.16.21.18.19.24.21.22.27.24.25.30.27.28
.0..6.0.0..6.0.0..6.0..0..6..0..0..6..0..0..6..0..0..6..0..0..6..0..0..6..0..0
.0..7.0.0..7.0.0..7.0..0..7..0..0..7..0..0..7..0..0..7..0..0..7..0..0..7..0
.1..9.3.4.12.6.7.15.9.10.18.12.13.21.15.16.24.18.19.27.21.22.30.24.25.33
.0..9.0.0..9.0.0..9.0..0..9..0..0..9..0..0..9..0..0..9..0..0..9..0..0
.0.10.0.0.10.0.0.10.0..0.10..0..0.10..0..0.10..0..0.10..0..0.10..0
LINKS
FORMULA
Empirical: T(n,k)=0 if both n+1 and k+1 are nonzero modulo 3
T(n,k)=k if n+1 is zero modulo 3 and k+1 is nonzero modulo 3
T(n,k)=n if n+1 is nonzero modulo 3 and k+1 is zero modulo 3
T(n,k)=n+k-1 otherwise
EXAMPLE
Some solutions for 8X8
..0..1..0..0..0..0..0..0....0..1..1..1..0..0..1..1....0..1..1..1..1..0..0..1
..1..1..0..1..0..0..1..0....0..0..1..1..1..0..1..0....1..1..1..0..1..0..1..1
..0..0..0..0..0..0..0..0....1..1..0..1..1..0..1..1....0..0..0..0..0..0..0..0
..1..0..0..1..1..0..1..1....0..1..1..1..0..0..1..1....1..0..1..0..0..0..1..0
..1..1..0..1..0..0..1..0....0..0..1..1..1..0..1..0....0..0..1..1..0..0..0..0
..0..0..0..0..0..0..0..0....1..1..0..1..1..0..1..1....0..0..0..0..0..0..0..0
..1..0..0..1..1..0..1..1....1..0..1..0..1..0..0..0....1..0..1..0..0..0..1..0
..0..0..0..0..1..0..0..1....1..1..1..0..0..0..0..1....0..0..1..1..0..0..0..0
CROSSREFS
Sequence in context: A181634 A230652 A230661 * A178153 A267794 A282499
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 04 2011
STATUS
approved