login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178952
T(n,k)=Log base 2 of the number of nXk binary arrays with no element equal to the modulo 2 sum of its king-move neighbors
1
0, 1, 1, 0, 3, 0, 0, 3, 3, 0, 1, 4, 0, 4, 1, 0, 6, 0, 0, 6, 0, 0, 6, 3, 0, 3, 6, 0, 1, 7, 0, 4, 4, 0, 7, 1, 0, 9, 0, 0, 9, 0, 0, 9, 0, 0, 9, 3, 0, 6, 6, 0, 3, 9, 0, 1, 10, 0, 4, 7, 0, 7, 4, 0, 10, 1, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 12, 0, 0, 12, 3, 0, 9, 6, 0, 6, 9, 0, 3, 12, 0, 1, 13, 0, 4, 10, 0, 7, 7, 0, 10, 4
OFFSET
1,5
COMMENTS
Table starts
.0..1.0.0..1.0.0..1.0..0..1..0..0..1..0..0..1..0..0..1..0..0..1..0..0..1..0..0
.1..3.3.4..6.6.7..9.9.10.12.12.13.15.15.16.18.18.19.21.21.22.24.24.25.27.27.28
.0..3.0.0..3.0.0..3.0..0..3..0..0..3..0..0..3..0..0..3..0..0..3..0..0..3..0..0
.0..4.0.0..4.0.0..4.0..0..4..0..0..4..0..0..4..0..0..4..0..0..4..0..0..4..0..0
.1..6.3.4..9.6.7.12.9.10.15.12.13.18.15.16.21.18.19.24.21.22.27.24.25.30.27.28
.0..6.0.0..6.0.0..6.0..0..6..0..0..6..0..0..6..0..0..6..0..0..6..0..0..6..0..0
.0..7.0.0..7.0.0..7.0..0..7..0..0..7..0..0..7..0..0..7..0..0..7..0..0..7..0
.1..9.3.4.12.6.7.15.9.10.18.12.13.21.15.16.24.18.19.27.21.22.30.24.25.33
.0..9.0.0..9.0.0..9.0..0..9..0..0..9..0..0..9..0..0..9..0..0..9..0..0
.0.10.0.0.10.0.0.10.0..0.10..0..0.10..0..0.10..0..0.10..0..0.10..0
LINKS
FORMULA
Empirical: T(n,k)=0 if both n+1 and k+1 are nonzero modulo 3
T(n,k)=k if n+1 is zero modulo 3 and k+1 is nonzero modulo 3
T(n,k)=n if n+1 is nonzero modulo 3 and k+1 is zero modulo 3
T(n,k)=n+k-1 otherwise
EXAMPLE
Some solutions for 8X8
..0..1..0..0..0..0..0..0....0..1..1..1..0..0..1..1....0..1..1..1..1..0..0..1
..1..1..0..1..0..0..1..0....0..0..1..1..1..0..1..0....1..1..1..0..1..0..1..1
..0..0..0..0..0..0..0..0....1..1..0..1..1..0..1..1....0..0..0..0..0..0..0..0
..1..0..0..1..1..0..1..1....0..1..1..1..0..0..1..1....1..0..1..0..0..0..1..0
..1..1..0..1..0..0..1..0....0..0..1..1..1..0..1..0....0..0..1..1..0..0..0..0
..0..0..0..0..0..0..0..0....1..1..0..1..1..0..1..1....0..0..0..0..0..0..0..0
..1..0..0..1..1..0..1..1....1..0..1..0..1..0..0..0....1..0..1..0..0..0..1..0
..0..0..0..0..1..0..0..1....1..1..1..0..0..0..0..1....0..0..1..1..0..0..0..0
CROSSREFS
Sequence in context: A181634 A230652 A230661 * A178153 A267794 A282499
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 04 2011
STATUS
approved