login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178949
E.g.f. satisfies: A(x) = exp(x^2*A(x)) where A(x) = Sum_{n>=0} a(n)*x^(2n)/(2n)!.
1
1, 2, 36, 1920, 210000, 39191040, 11181360960, 4534378168320, 2481970620729600, 1764322560000000000, 1580868516481859404800, 1743505552795995891302400, 2321376488366363008816435200, 3671767205084150828189614080000
OFFSET
0,2
LINKS
Vladimir Kruchinin and D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = (n+1)^(n-1)*(2*n)!/n!.
E.g.f.: LambertW(-x^2)/(-x^2) = Sum_{n>=0} a(n)*x^(2n)/(2n)!.
EXAMPLE
E.g.f.: A(x) = 1 + 2*x^2/2! + 36*x^4/4! + 1920*x^6/6! +...
log(A(x)) = x^2 + 2*x^4/2! + 36*x^6/4! + 1920*x^8/6! +...
MATHEMATICA
Table[(n+1)^(n-1)(2n)!/n!, {n, 0, 15}] (* Harvey P. Dale, Oct 21 2011 *)
PROG
(PARI) {a(n)=(n+1)^(n-1)*(2*n)!/n!}
(PARI) N=50; /* up to order N */
A(x)=sum(n=0, N-1, if (n%2==1, 0, (n/2+1)^(n/2-1)/(n/2)!*x^n) )+O(x^N); /* e.g.f. */
v=Vec(serlaplace(A(x))) /* gives sequence as vector with interpolated zeros */
/* Now check that e.g.f. satisfies functional equation: */
A(x)-exp(x^2*A(x)) /* ==O(x^50) "==zero" */
(PARI)
N = 28; x = 'x + O('x^N); y = 'y; Fxy = exp(x^2*y) - y;
seq() = {
my(y0 = 1 + O('x^N), y1=0);
for (k = 1, N,
y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
if (y1 == y0, break()); y0 = y1);
Vec(y0);
};
select(x->x, Vec(serlaplace(Ser(seq())))) \\ Gheorghe Coserea, Nov 30 2016
CROSSREFS
Sequence in context: A174881 A126934 A303503 * A200571 A213985 A203021
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 31 2010
EXTENSIONS
Edited by Paul D. Hanna, Jan 03 2011
STATUS
approved