Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 30 2022 09:00:05
%S 1,2,36,1920,210000,39191040,11181360960,4534378168320,
%T 2481970620729600,1764322560000000000,1580868516481859404800,
%U 1743505552795995891302400,2321376488366363008816435200,3671767205084150828189614080000
%N E.g.f. satisfies: A(x) = exp(x^2*A(x)) where A(x) = Sum_{n>=0} a(n)*x^(2n)/(2n)!.
%H Gheorghe Coserea, <a href="/A178949/b178949.txt">Table of n, a(n) for n = 0..100</a>
%H Vladimir Kruchinin and D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.
%F a(n) = (n+1)^(n-1)*(2*n)!/n!.
%F E.g.f.: LambertW(-x^2)/(-x^2) = Sum_{n>=0} a(n)*x^(2n)/(2n)!.
%e E.g.f.: A(x) = 1 + 2*x^2/2! + 36*x^4/4! + 1920*x^6/6! +...
%e log(A(x)) = x^2 + 2*x^4/2! + 36*x^6/4! + 1920*x^8/6! +...
%t Table[(n+1)^(n-1)(2n)!/n!,{n,0,15}] (* _Harvey P. Dale_, Oct 21 2011 *)
%o (PARI) {a(n)=(n+1)^(n-1)*(2*n)!/n!}
%o (PARI) N=50; /* up to order N */
%o A(x)=sum(n=0,N-1, if (n%2==1,0, (n/2+1)^(n/2-1)/(n/2)!*x^n) )+O(x^N); /* e.g.f. */
%o v=Vec(serlaplace(A(x))) /* gives sequence as vector with interpolated zeros */
%o /* Now check that e.g.f. satisfies functional equation: */
%o A(x)-exp(x^2*A(x)) /* ==O(x^50) "==zero" */
%o (PARI)
%o N = 28; x = 'x + O('x^N); y = 'y; Fxy = exp(x^2*y) - y;
%o seq() = {
%o my(y0 = 1 + O('x^N), y1=0);
%o for (k = 1, N,
%o y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0);
%o if (y1 == y0, break()); y0 = y1);
%o Vec(y0);
%o };
%o select(x->x, Vec(serlaplace(Ser(seq())))) \\ _Gheorghe Coserea_, Nov 30 2016
%K nonn
%O 0,2
%A _Vladimir Kruchinin_, Dec 31 2010
%E Edited by _Paul D. Hanna_, Jan 03 2011