login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x)^2 + A(-x)^2 = 2 and A(x)^-2 - A(-x)^-2 = -8*x.
10

%I #15 Aug 26 2020 01:53:15

%S 1,2,-2,-28,54,860,-2004,-33720,86054,1492908,-4019452,-71101832,

%T 198310460,3555617432,-10168382696,-184127171952,536496907782,

%U 9788598556876,-28937139277804,-531135371147368,1588378827366868,29295861148032584

%N G.f. A(x) satisfies: A(x)^2 + A(-x)^2 = 2 and A(x)^-2 - A(-x)^-2 = -8*x.

%C The unsigned version of this sequence, A246062, has g.f.: sqrt( (1 + sqrt(1+8*x)) / (1 + sqrt(1-8*x)) ).

%H Seiichi Manyama, <a href="/A193618/b193618.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: ( 2*(sqrt(1+64*x^2) + 8*x)/(sqrt(1+64*x^2) + 1) )^(1/4).

%F G.f. A(x) = 1/G(x) where G(x) is the g.f. of A193619.

%e G.f.: A(x) = 1 + 2*x - 2*x^2 - 28*x^3 + 54*x^4 + 860*x^5 - 2004*x^6 +...

%e where

%e A(x)^2 = 1 + 4*x - 64*x^3 + 2048*x^5 - 81920*x^7 + 3670016*x^9 +...

%e and

%e A(x)^-2 = 1 - 4*x + 16*x^2 - 256*x^4 + 8192*x^6 - 327680*x^8 +...

%o (PARI) {a(n)=local(Ox=x*O(x^n),A=(2*(sqrt(1+64*x^2+Ox)+8*x)/(sqrt(1+64*x^2+Ox)+1))^(1/4));polcoeff(A,n)}

%o (PARI) N=40; x='x+O('x^N); Vec(sqrt(2/(1-8*x+sqrt(1+64*x^2)))) \\ _Seiichi Manyama_, Aug 26 2020

%Y Cf. A193619, A246062.

%K sign

%O 0,2

%A _Paul D. Hanna_, Aug 01 2011