

A349496


Numbers of the form 4*t^22 (A060626) when t >= 1 is an integer that is not a term in A001542.


2



2, 34, 62, 98, 142, 194, 254, 322, 398, 482, 674, 782, 898, 1022, 1154, 1294, 1442, 1598, 1762, 1934, 2114, 2302, 2498, 2702, 2914, 3134, 3362, 3598, 3842, 4094, 4354, 4622, 4898, 5182, 5474, 5774, 6082, 6398, 6722, 7054, 7394, 7742, 8098, 8462, 8834, 9214, 9602, 9998, 10402
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Equivalently: numbers k for which there exists only one integer m with here m = k/2 + 1 such that A000178(k) / m! is a square, where A000178(k) = k$ = 1!*2!*...*k! is the superfactorial of k.


LINKS



EXAMPLE

A060626(3) = 34 and 3 is not a term in A001542; also 34$ / 18! is a square, hence 34 is a term.


PROG

(PARI) isok(m) = my(x=(m+2)/4, y); issquare(x, &y) && (denominator(y)==1) && !issquare(2*x+1); \\ Michel Marcus, Nov 22 2021


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



