The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A348692 Triangle whose n-th row lists the integers m such that A000178(n) / m! is a square, where A000178(n) = n$ = 1!*2!*...*n! is the superfactorial of n; if there is no such m, then n-th row = 0. 9
1, 2, 0, 2, 0, 0, 0, 3, 4, 0, 0, 0, 6, 0, 8, 9, 0, 8, 9, 0, 7, 0, 10, 0, 0, 0, 12, 0, 0, 0, 14, 0, 0, 0, 15, 16, 0, 18, 0, 18, 0, 0, 0, 20, 0, 0, 0, 22, 0, 0, 0, 24, 25, 0, 0, 0, 26, 0, 0, 0, 28, 0, 0, 0, 30, 0, 32, 0, 32, 0, 0, 0, 34, 0, 0, 0, 35, 36, 0, 0, 0, 38, 0, 0, 0, 40 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This sequence is the generalization of a problem proposed during the 17th Tournament of Towns (Spring 1996) and also during the first stage of the Moscow Mathematical Olympiad (1995-1996); the problem asked the question for n = 100 (see Andreescu-Gelca reference, Norman Do link, and Examples section).
Exhaustive results coming from Mabry-McCormick's link and adapted for OEIS:
-> n$ (A000178) is never a square if n > 1.
-> There is no solution if n is odd > 1, hence row(2q+1) = 0 when q > 0.
-> When n is even and there is a solution, then m belongs to {n/2 - 2, n/2 - 1, n/2, n/2 + 1, n/2 + 2}.
-> If 4 divides n (A008536), m = n/2 is always a solution because
(n$) / (n/2)! = ( 2^(n/4) * Product_{j=1..n/2} ((2j-1)!) )^2.
-> For other cases, see Formula section.
-> When n is even, there are 0, 1 or 2 solutions, so, the maximal length of a row is 2.
-> It is not possible to get more than three consecutive 0 terms, and three consecutive 0 terms correspond to three consecutive rows such that (n, n+1, n+2) = (4u+1, 4u+2, 4u+3) for some u >= 1.
REFERENCES
Titu Andreescu and Rǎzvan Gelca, Putnam and Beyond, New York, Springer, 2007, problem 725, pp. 253 and 686.
Peter J. Taylor and A. M. Storozhev, Tournament of Towns 1993-1997, Book 4, Tournament 17, Spring 1996, O Level, Senior questions, Australian Mathematics Trust, 1998, problem 3, p. 96.
LINKS
Diophante, A1963 - Le vilain petit canard (in French).
Norman Do, Factorial fun, Puzzle Corner 13, Gaz. Aust. Math. Soc. 36, 2009, 176-179, page 178.
Rick Mabry and Laura McCormick, Square products of punctured sequences of factorials, Gaz. Aust. Math. Soc., 2009, pages 346-352.
Tournament of Towns, Tournament 17, 1995-1996, Spring 1996, O Level, Senior questions, question 3 (in Russian).
FORMULA
When there are two such integers m, then m_1 < m_2.
If n = 8*q^2 (A139098), then m_1 = n/2 - 1 = 4q^2-1 (see example for n=8).
If n = 8q*(q+1) (A035008), then m_2 = n/2 + 1 = (2q+1)^2 (see example for n=16).
if n = 4q^2 - 2 (A060626), then m_1 = n/2 + 1 = 2q^2 (see example for n=14).
If n = 2q^2, q>1 in A001541, then m = n/2 - 2 = q^2-2 (see example for n=18).
If n = 2q^2-4, q>1 in A001541, then m_2 = n/2 + 2 = q^2 (see example for n=14).
EXAMPLE
For n = 4, 4$ / 3! = 48, 4$ / 4! = 12 but 4$ / 2! = 12^2, hence, m = 2.
For n = 8, 8$ / 2! is not a square, but m_1 = 3 because 8$ / 3! = 29030400^2 and m_2 = 4 because 8$ / 4! = 14515200^2.
For n = 14, m_1 = 8 because 14$ / 8! = 1309248519599593818685440000000^2 and m_2 = 9 because 14$ / 9! = 436416173199864606228480000000^2.
For n = 16, m_1 = 8 because 16$ / 8! = 6848282921689337839624757371207680000000000^2 and m_2 = 9 because 16$ / 9! = 2282760973896445946541585790402560000000000^2.
For n = 18, m = 7 because 18$ / 7! = 29230177671473293820176594405114531928195727360000000000000^2 and there is no other solution.
For n = 100, m = 50, unique solution to the Olympiad problems.
Triangle begins:
1;
2;
0;
2;
0;
0;
0;
8, 9;
0;
...
PROG
(PARI) sf(n)=prod(k=2, n, k!); \\ A000178
row(n) = my(s=sf(n)); Vec(select(issquare, vector(n, k, s/k!), 1));
lista(nn) = {my(list = List()); for (n=1, nn, my(r=row(n)); if (#r, for (k=1, #r, listput(list, r[k])), listput(list, 0)); ); Vec(list); } \\ Michel Marcus, Oct 30 2021
CROSSREFS
Sequence in context: A062590 A139215 A139216 * A355432 A300824 A269248
KEYWORD
nonn,tabf
AUTHOR
Bernard Schott, Oct 30 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 12:09 EDT 2024. Contains 372773 sequences. (Running on oeis4.)