|
|
|
|
0, 8, 32, 72, 128, 200, 288, 392, 512, 648, 800, 968, 1152, 1352, 1568, 1800, 2048, 2312, 2592, 2888, 3200, 3528, 3872, 4232, 4608, 5000, 5408, 5832, 6272, 6728, 7200, 7688, 8192, 8712, 9248, 9800, 10368, 10952, 11552, 12168, 12800
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Opposite numbers to the centered 16-gonal numbers (A069129) in the square spiral whose vertices are the triangular numbers (A000217).
a(n-1) is the molecular topological index of the n-wheel graph W_n. - Eric W. Weisstein, Jul 11 2011
An n X n pandiagonal magic square has a(n) orientations. - Kausthub Gudipati, Sep 15 2011
Sum of all the parts in the partitions of 4n into exactly two parts. - Wesley Ivan Hurt, Jul 23 2014
For n>1, a(n) is the third least number k = x + y, with x>0 and y>0, such that there are n different pairs (x,y) for which x*y/k is an integer. - Paolo P. Lava, Jan 29 2018
Equivalently: integers k such that k$ / (k/2-1)! and k$ / (k/2)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information). - Bernard Schott, Dec 02 2021
|
|
LINKS
|
|
|
FORMULA
|
Sum_{n>=1} 1/a(n) = Pi^2/48 (A245058).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/96.
Product_{n>=1} (1 + 1/a(n)) = sqrt(8)*sinh(Pi/sqrt(8))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(8)*sin(Pi/sqrt(8))/Pi. (End)
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|