The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018842 Number of squares on infinite chessboard at n knight's moves from center. 3
 1, 8, 32, 68, 96, 120, 148, 176, 204, 232, 260, 288, 316, 344, 372, 400, 428, 456, 484, 512, 540, 568, 596, 624, 652, 680, 708, 736, 764, 792, 820, 848, 876, 904, 932, 960, 988, 1016, 1044, 1072, 1100, 1128, 1156 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..42. Moon Duchin, Counting in Groups: Fine Asymptotic Geometry, Notices of the AMS 63.8 (2016), pp. 871-974. See p. 873. Mordechai Katzman, Knight's moves on an infinite board M. Katzman, Counting Monomials, J. Alg. Comb. 22 (2005) 331-341. A. M. Miller and D. L. Farnsworth, Counting the Number of Squares Reachable in k Knight's Moves, Open Journal of Discrete Mathematics, 2013, 3, 151-154. Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA a(n) = 28*n-20, n >= 5. G.f.: (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2. MAPLE (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2; seq(coeff(series(%, x, n+1), x, n), n=0..50); MATHEMATICA CoefficientList[Series[(1+5x+12x^2-8x^4+4x^5)(1+x)/(1-x)^2, {x, 0, 50}], x] (* or *) Join[{1, 8, 32, 68, 96}, LinearRecurrence[{2, -1}, {120, 148}, 46]] (* Harvey P. Dale, Jul 05 2011 *) CROSSREFS Cf. A018836 (partial sums), A038522. Sequence in context: A253295 A290960 A009245 * A139098 A224543 A211633 Adjacent sequences: A018839 A018840 A018841 * A018843 A018844 A018845 KEYWORD nonn,nice,walk,easy AUTHOR N. J. A. Sloane, Marc LeBrun EXTENSIONS Formula corrected by Jean Drabbe, Mar 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 23:31 EST 2024. Contains 370537 sequences. (Running on oeis4.)