login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253295
Prime factor look-and-say sequence starting with a(0) = 8.
1
8, 32, 52, 22113, 5317113, 131167110613, 1711111711229181533, 1761140131560305063481, 1313718313871371493773936301, 125111501315199577167049112574051, 33185242436199338915435977096119517, 149731486009055371137303679066123116017
OFFSET
0,1
COMMENTS
If prime factorization of a(n) is p_1^d_1 p_2^d_2 ... p_k^d_k with p_1 < ... < p_k, then a(n+1) is the concatenation of d_1, p_1, d_2, p_2, ..., d_k, p_k.
I suspect that eventually a prime a(n) may be reached, but haven't found one yet.
FORMULA
a(n+1) = A123132(a(n)).
EXAMPLE
a(0) = 2^3 so a(1) = 32.
a(1) = 2^5 so a(2) = 52.
a(2) = 2^2 * 13^1 so a(3) = 22113.
a(3) = 3^5 * 7^1 * 13^1 so a(4) = 5317113.
MAPLE
ncat:= (x, y) -> 10^(1+ilog10(y))*x + y:
f:= proc(x) local L, y, t;
L:= sort(ifactors(x)[2], (a, b)->a[1]<b[1]);
y:= 0;
for t in L do y := ncat(y, ncat(t[2], t[1])) od:
y
end proc:
A[0]:= 8:
y:= A[0]:
for m from 1 to 20 do
y:= f(y);
A[m]:= y;
od:
seq(A[i], i=0..20);
MATHEMATICA
a253295[n_] := Block[{a, t = Table[8, {n}]},
a[x_] := FromDigits[Flatten[IntegerDigits[Reverse /@
FactorInteger[x]]]]; Do[t[[i]] = a[t[[i - 1]]], {i, 2, n}]; t];
a253295[13] (* Michael De Vlieger, Dec 29 2014 *)
PROG
(Python)
from sympy import factorint
A253295_list = [8]
for _ in range(10):
....A253295_list.append(int(''.join((str(e)+str(p) for p, e in sorted(factorint(A253295_list[-1]).items())))))
# Chai Wah Wu, Dec 30 2014
CROSSREFS
Sequence in context: A129749 A005879 A067519 * A290960 A009245 A018842
KEYWORD
nonn,base
AUTHOR
Robert Israel, Dec 29 2014
STATUS
approved