|
|
A067519
|
|
Numbers k such that k^2 + 1 is composite and phi(k^2 + 1) == 0 (mod k).
|
|
1
|
|
|
8, 32, 50, 64, 128, 192, 216, 336, 360, 900, 1000, 1152, 1250, 1280, 1344, 1408, 1800, 2450, 2880, 4096, 5440, 6528, 7564, 9216, 9800, 11008, 12544, 13824, 14450, 14976, 16576, 18432, 20000, 21420, 21440, 24200, 25675, 36000, 36288, 43778, 46656
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If k^2 + 1 is prime, trivially phi(k^2 + 1) == 0 (mod k).
|
|
LINKS
|
|
|
MATHEMATICA
|
n2Q[n_]:=Module[{c=n^2+1}, CompositeQ[c]&&Divisible[EulerPhi[c], n]]; Select[Range[50000], n2Q] (* Harvey P. Dale, Apr 16 2015 *)
|
|
PROG
|
(PARI) for(n=1, 46656, m=n^2+1; if(isprime(m)==0, if(eulerphi(m)%n==0, print1(n ", ")))) \\ Donovan Johnson, Nov 14 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|