login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038522
On a (2n+1) X (2n+1) board, let m(i) be the number of squares that are i knight's moves from center; sequence gives max m(i) for i >= 0.
2
1, 1, 8, 20, 32, 52, 68, 76, 96, 96, 120, 120, 148, 148, 176, 176, 204, 204, 232, 232, 260, 260, 288, 288, 316, 316, 344, 344, 372, 372, 400, 400, 428, 428, 456, 456, 484, 484, 512, 512, 540, 540, 568, 568, 596, 596, 624, 624, 652, 652, 680, 680, 708, 708
OFFSET
0,3
LINKS
Andreas P. Hadjipolakis, Problem E2605, Am. Math. Monthly Vol. 83 (1976), no. 7 (Aug-Sept.), p. 566.
Roger Weitzenkamp, Solution to Problem E2605: Labels on a Chessboard, Am. Math. Monthly Vol. 84 (1977), p. 822.
FORMULA
a(n) = 28*floor(n/2) - 20 for n >= 10. - Andrew Howroyd, Feb 28 2020
From Stefano Spezia, Feb 29 2020: (Start)
G.f.: (1 + 6*x^2 + 12*x^3 + 5*x^4 + 8*x^5 + 4*x^6 - 12*x^7 + 4*x^8 - 8*x^9 + 4*x^10 + 4*x^12)/((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 12. (End)
EXAMPLE
On a 5 X 5 board, [ m(0),...,m(4) ]=[ 1,8,8,4,4 ], max=8, so a(2)=8.
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {1, 1, 8, 20, 32, 52, 68, 76, 96, 96, 120, 120, 148}, 60] (* Harvey P. Dale, Apr 15 2020 *)
PROG
(PARI) Vec((1 + x^2)*(1 + 5*x^2 + 12*x^3 - 4*x^5 + 4*x^6 - 8*x^7 + 4*x^10) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Mar 16 2020
CROSSREFS
Cf. A018842.
Sequence in context: A017617 A246309 A363518 * A267435 A348093 A186293
KEYWORD
easy,nonn,walk,nice
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)hol.gr)
EXTENSIONS
Corrected and additional terms added by Andrew Howroyd, Feb 28 2020
STATUS
approved