login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363518
Concentric square numbers on the faces of an n X n X n cube.
1
1, 8, 20, 32, 50, 80, 116, 152, 194, 248, 308, 368, 434, 512, 596, 680, 770, 872, 980, 1088, 1202, 1328, 1460, 1592, 1730, 1880, 2036, 2192, 2354, 2528, 2708, 2888, 3074, 3272, 3476, 3680, 3890, 4112, 4340, 4568, 4802, 5048, 5300, 5552, 5810, 6080, 6356, 6632, 6914, 7208, 7508, 7808
OFFSET
1,2
COMMENTS
a(n) is the number of colored cubes in the outer layer of a cube made up of n^3 unit cubes. The cubes are painted in such a way that concentric square numbers are obtained on each face of the n X n X n cube.
FORMULA
a(n) = 6*A194274 - 12*n + 8, where n>1.
From Stefano Spezia, Jun 08 2023: (Start)
G.f.: (1 + 5*x + 5*x^4 + x^5)/((1 - x)^3*(1 + x^2)).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3)- 3*a(n-4) + a(n-5) for n > 6. (End)
EXAMPLE
a(3) = 6*8 - 12*1 - 2*8 = 20;
a(5) = 6*17 - 12*3 - 2*8 = 50.
MATHEMATICA
Join[{1}, LinearRecurrence[{3, -4, 4, -3, 1}, {8, 20, 32, 50, 80}, 51]] (* Stefano Spezia, Jun 08 2023 *)
PROG
(Python)
def A363518(n): return 6*((3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2))-12*n+8 if n>1 else 1 # Chai Wah Wu, Jul 15 2023
CROSSREFS
Cf. A194274.
Sequence in context: A339273 A017617 A246309 * A038522 A267435 A348093
KEYWORD
nonn,easy
AUTHOR
Nicolay Avilov, Jun 07 2023
STATUS
approved