login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267435
Numbers n such that each reduced Collatz trajectory (mod p): (n, T(n), T(T(n)),..., 4, 2, 1) / pZ, where the odd prime p is the number of iterations needed to reach 1, contains exactly the p-1 values {1, 2, 3, .., p-1}.
1
8, 20, 32, 320, 2048, 2216, 8192, 13312, 87040, 218432, 524288, 89478400, 536870912, 137438953472, 250199979283796, 9007199254740992, 63800994005254144, 96076791692656640, 382805968326492160, 576460752303423488, 2305843009213693952, 4099276399740365440
OFFSET
1,1
COMMENTS
Or numbers n such that the multiplicative groups {n, T(n), T(T(n)),..., 4, 2, 1} / pZ are of order p-1.
Property of the sequence:
This sequence provides a link with Artin’s conjecture on primitive roots.
Conjecture: the sequence is infinite (corollary of a Artin’s conjecture because the sequence contains the numbers 2^A001122(k) where A001122 are the primes with primitive root 2).
The sequence is divided into two class of numbers:
i) A class of powers of 2: 2^3, 2^5, 2^11, 2^13, 2^19, 2^29, 2^37, 2^53, ..., 2^A001122(k),…
ii) A class of non-powers of 2: 20, 320, 2216, 13312, 87040, 218432, 89478400...
The corresponding p of the sequence are 3, 7, 5, 11, 11, 19, 13, 19, 19, 23, 19, 29,...
EXAMPLE
20 is in the sequence because the Collatz trajectory of 20 is {20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1} with 7 iterations, and the corresponding reduced trajectory (mod 7) is {6, 3, 5, 2, 1, 4, 2, 1} => the multiplicative group of order 6 is G = {1, 2, 3, 4, 5, 6}.
MAPLE
nn:=10000:T:=array(1..2000):U:=array(1..2000):
for n from 1 to 10000000 do:
kk:=1:m:=n:T[kk]:=n:it:=0:
for i from 1 to nn while(m<>1) do:
if irem(m, 2)=0
then
m:=m/2:kk:=kk+1:T[kk]:=m:it:=it+1:
else
m:=3*m+1:kk:=kk+1:T[kk]:=m:it:=it+1:
fi:
od:
if isprime(it)
then
lst:={}:
for p from 1 to it do:
lst:=lst union {irem(T[p], it)}:
od:
n0:=nops(lst):
if n0=it-1 and lst[1]=1
then
print(n):
else
fi:
fi:
od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 15 2016
EXTENSIONS
a(14)-a(22) from Hiroaki Yamanouchi, Jan 19 2016
STATUS
approved