The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001122 Primes with primitive root 2. (Formerly M2473 N0981) 139
 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Artin conjectured that this sequence is infinite. Conjecture: sequence contains infinitely many pairs of twin primes. - Benoit Cloitre, May 08 2003 Pieter Moree writes (Oct 20 2004): Assuming the Generalized Riemann Hypothesis, it can be shown that the density of primes p such that a prescribed integer g has order (p-1)/t, with t fixed, exists and, moreover, it can be computed. This density will be a rational number times the so-called Artin constant. For 2 and 10 the density of primitive roots is A, the Artin constant itself. It seems that this sequence consists of A050229 \ {1,2}. Primes p such that 1/p, when written in base 2, has period p-1, which is the greatest period possible for any integer. Positive integer 2*m-1 is in the sequence iff A179382(m)=m-1. - Vladimir Shevelev, Jul 14 2010 These are the odd primes p for which the polynomial 1+x+x^2+...+x^(p-1) is irreducible over GF(2). - V. Raman, Sep 17 2012 [Corrected by N. J. A. Sloane, Oct 17 2012] Prime(n) is in the sequence if (and conjecturally only if) A133954(n) = prime(n). - Vladimir Shevelev, Aug 30 2013 Pollack shows that, on the GRH, that there is some C such that a(n+1) - a(n) < C infinitely often (in fact, 1 can be replaced by any positive integer). Further, for any m, a(n), a(n+1), ..., a(n+m) are consecutive primes infinitely often. - Charles R Greathouse IV, Jan 05 2015 From Jianing Song, Apr 27 2019: (Start) All terms are congruent to 3 or 5 modulo 8. If we define Pi(N,b) = # {p prime, p <= N, p == b (mod 8)}; Q(N) = # {p prime, p <= N, p in this sequence}, then by Artin's conjecture, Q(N) ~ C*N/log(N) ~ 2*C*(Pi(N,3) + Pi(N,5)), where C = A005596 is Artin's constant. Conjecture: if we further define Q(N,b) = # {p prime, p <= N, p == b (mod 8), p in this sequence}, then we have: Q(N,3) ~ (1/2)*Q(N) ~ C*Pi(N,3); Q(N,5) ~ (1/2)*Q(N) ~ C*Pi(N,5). (End) REFERENCES M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 864. E. Bach and Jeffrey Shallit, Algorithmic Number Theory, I; see p. 221. J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 169. M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 56. Lehmer, D. H. and Lehmer, Emma; Heuristics, anyone? in Studies in mathematical analysis and related topics, pp. 202-210, Stanford Univ. Press, Stanford, Calif., 1962. D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 81. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. Joerg Arndt, Matters Computational (The Fxtbook), pp. 876-878. Richard Bartels, Generalized Loewy Length of Cohen-Macaulay Local and Graded Rings, arXiv:2308.14932 [math.AC], 2023. See p. 10. J. Conde, M. Miller, J. M. Miret, and K. Saurav, On the Nonexistence of Almost Moore Digraphs of Degree Four and Five, Mathematics in Computer Science, 9(2) (2015), 145-149. Jonathan Detchart and Jérôme Lacan, Improving the coding speed of erasure codes with polynomial ring transforms, arXiv:1709.00178 [cs.IT], 2017. K. Dilcher and L. Ericksen, Reducibility and irreducibility of Stern (0, 1)-polynomials, Communications in Mathematics, 22 (2014), 77-102. R. Gupta and M. R. Murty, A remark on Artin's conjecture, Invent. Math. 78 (1984), 127-230. C. Hooley, On Artin's conjecture, J. Reine Angewandte Math., 225 (1967), 209-220. Robert Jackson, Dmitriy Rumynin and Oleg V. Zaboronski, An approach to RAID-6 based on cyclic groups, Applied Mathematics & Information Sciences, 5(2) (2011), 148-170. Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv:1608.00862 [math.GM], 2016. Sihem Mesnager and Jean-Pierre Flori, A note on hyper-bent functions via Dillon-like exponents, IACR, Report 2012/033, 2012. F. Pillichshammer, Bounds for the quality parameter of digital shift nets over Z_2, Finite Fields Applic., 8 (2002), 444-454. Pieter Moree, Artin's primitive root conjecture-a survey, arXiv:math/0412262 [math.NT], 2004-2012. Paul Pollack, Bounded gaps between primes with a given primitive root, arXiv:1404.4007 [math.NT], 2014. Vladimir Shevelev, On the Newman sum over multiples of a prime with a primitive or semiprimitive root 2, arXiv:0710.1354 [math.NT], 2007. Stephan Tornier, Groups Acting on Trees With Prescribed Local Action, arXiv:2002.09876 [math.GR], 2020. Qifu Tyler Sun, Hanqi Tang, Zongpeng Li, Xiaolong Yang, and Keping Long, Circular-shift Linear Network Codes with Arbitrary Odd Block Lengths, arXiv:1806.04635 [cs.IT], 2018. Eric Weisstein's World of Mathematics, Artin's constant. Wikipedia, Artin's conjecture on primitive roots. Index entries for sequences related to Artin's conjecture Index entries for primes by primitive root FORMULA Delta(a(n),2^a(n)*x) = a(n)*Delta(a(n),2*x), where Delta(k,x) is the difference between numbers of evil(A001969) and odious(A000069) integers divisible by k in interval [0,x). - Vladimir Shevelev, Aug 30 2013 For n >= 2, a(n) = 1 + 2*A163782(n-1). - Antti Karttunen, Oct 07 2017 MATHEMATICA Select[ Prime@Range@200, PrimitiveRoot@# == 2 &] (* Robert G. Wilson v, May 11 2001 *) pr = 2; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == # - 1 &] (* N. J. A. Sloane, Jun 01 2010 *) PROG (PARI) forprime(p=3, 1000, if(znorder(Mod(2, p))==(p-1), print1(p, ", "))); \\ [corrected by Michel Marcus, Oct 08 2014] (Python) from itertools import islice from sympy import nextprime, is_primitive_root def A001122_gen(): # generator of terms p = 2 while (p:=nextprime(p)): if is_primitive_root(2, p): yield p A001122_list = list(islice(A001122_gen(), 30)) # Chai Wah Wu, Feb 13 2023 CROSSREFS Cf. A001123, A001913, A001917, A005596 (Artin's constant), A050229, A071642, A163782, A292270. Cf. A002326 for the multiplicative order of 2 mod 2n+1. (Alternatively, the least positive value of m such that 2n+1 divides 2^m-1). Cf. A216838 (Odd primes for which 2 is not a primitive root). Sequence in context: A319041 A003629 A175865 * A152871 A329760 A156221 Adjacent sequences: A001119 A001120 A001121 * A001123 A001124 A001125 KEYWORD nonn,easy,nice AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 21:08 EST 2023. Contains 367565 sequences. (Running on oeis4.)