|
|
A000069
|
|
Odious numbers: numbers with an odd number of 1's in their binary expansion.
(Formerly M1031 N0388)
|
|
297
|
|
|
1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 128
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
This sequence and A001969 give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. A000028, A000379.
In French: les nombres impies.
Has asymptotic density 1/2, since exactly 2 of the 4 numbers 4k, 4k+1, 4k+2, 4k+3 have an even sum of bits, while the other 2 have an odd sum. - Jeffrey Shallit, Jun 04 2002
Nim-values for game of mock turtles played with n coins.
For any positive integer m, the partition of the set of the first 2^m positive integers into evil ones E and odious ones O is a fair division for any polynomial sequence p(k) of degree less than m, that is, Sum_{k in E} p(k) = Sum_{k in O} p(k) holds for any polynomial p with deg(p) < m. - Pietro Majer, Mar 15 2009
For n>1 let b(n) = a(n-1). Then b(b(n)) = 2b(n). - Benoit Cloitre, Oct 07 2010
Lexicographically earliest sequence of distinct nonnegative integers with no term being the binary exclusive OR of any terms. The equivalent sequence for addition or for subtraction is A005408 (the odd numbers) and for multiplication is A026424. - Peter Munn, Jan 14 2018
Numbers of the form m XOR (2*m+1) for some m >= 0. - Rémy Sigrist, Apr 14 2022
|
|
REFERENCES
|
E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 433.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 22.
Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (in Russian).
N. J. A. Sloane, A handbook of Integer Sequences, Academic Press, 1973 (including this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
J.-P. Allouche, B. Cloitre, and V. Shevelev, Beyond odious and evil, arXiv preprint arXiv:1405.6214 [math.NT], 2014.
J.-P. Allouche, B. Cloitre, and V. Shevelev, Beyond odious and evil, Aequationes mathematicae, March 2015, pp 1-13.
R. K. Guy, The unity of combinatorics, Proc. 25th Iranian Math. Conf, Tehran, (1994), Math. Appl 329 129-159, Kluwer Dordrecht 1995, Math. Rev. 96k:05001.
R. K. Guy, Impartial games, pp. 35-55 of Combinatorial Games, ed. R. K. Guy, Proc. Sympos. Appl. Math., 43, Amer. Math. Soc., 1991.
|
|
FORMULA
|
G.f.: 1 + Sum_{k>=0} (t*(2+2t+5t^2-t^4)/(1-t^2)^2) * Product_{j=0..k-1} (1-x^(2^j)), t=x^2^k. - Ralf Stephan, Mar 25 2004
a(2*n+1) + a(2*n) = A017101(n) = 8*n+3. a(2*n+1) - a(2*n) gives the Thue-Morse sequence (1, 3 version): 1, 3, 3, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, ... A001969(n) + A000069(n) = A016813(n) = 4*n+1. - Philippe Deléham, Feb 04 2004
a(1) = 1; for n > 1: a(2*n) = 6*n-3 -a(n), a(2*n+1) = a(n+1) + 2*n. - Corrected by Vladimir Shevelev, Sep 25 2011
For k >= 1 and for every real (or complex) x, we have Sum_{i=1..2^k} (a(i)+x)^s = Sum_{i=1..2^k} (A001969(i)+x)^s, s=0..k.
For x=0, s <= k-1, this is known as Prouhet theorem (see J.-P. Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence). - Vladimir Shevelev, Jan 16 2012
|
|
EXAMPLE
|
For k=2, x=0 and x=0.2 we respectively have 1^2 + 2^2 + 4^2 + 7^2 = 0^2 + 3^2 + 5^2 + 6^2 = 70;
(1.2)^2 + (2.2)^2 + (4.2)^2 + (7.2)^2 = (0.2)^2 + (3.2)^2 + (5.2)^2 + (6.2)^2 = 75.76;
for k=3, x=1.8, we have (2.8)^3 + (3.8)^3 + (5.8)^3 + (8.8)^3 + (9.8)^3 + (12.8)^3 + (14.8)^3 + (15.8)^3 = (1.8)^3 + (4.8)^3 + (6.8)^3 + (7.8)^3 + (10.8)^3 + (11.8)^3 + (13.8)^3 + (16.8)^3 = 11177.856. - Vladimir Shevelev, Jan 16 2012
|
|
MAPLE
|
s := proc(n) local i, j, k, b, sum, ans; ans := [ ]; j := 0; for i while j<n do sum := 0; b := convert(i, base, 2); for k to nops(b) do sum := sum+b[ k ]; od; if sum mod 2 = 1 then ans := [ op(ans), i ]; j := j+1; fi; od; RETURN(ans); end; t1 := s(100); A000069 := n->t1[n]; # s(k) gives first k terms.
is_A000069 := n -> type(add(i, i=convert(n, base, 2)), odd):
|
|
MATHEMATICA
|
a[ n_] := If[ n < 1, 0, 2 n - 1 - Mod[ Total @ IntegerDigits[ n - 1, 2], 2]]; (* Michael Somos, Jun 01 2013 *)
|
|
PROG
|
(PARI) {a(n) = if( n<1, 0, 2*n - 1 - subst( Pol(binary( n-1)), x, 1) % 2)}; /* Michael Somos, Jun 01 2013 */
(PARI) {a(n) = if( n<2, n==1, if( n%2, a((n+1)/2) + n-1, -a(n/2) + 3*(n-1)))}; /* Michael Somos, Jun 01 2013 */
(Magma) [ n: n in [1..130] | IsOdd(&+Intseq(n, 2)) ]; // Klaus Brockhaus, Oct 07 2010
(Haskell)
a000069 n = a000069_list !! (n-1)
a000069_list = [x | x <- [0..], odd $ a000120 x]
(Python)
[n for n in range(1, 201) if bin(n)[2:].count("1") % 2] # Indranil Ghosh, May 03 2017
(Python)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,core,nonn,nice,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|