|
|
A229829
|
|
Numbers coprime to 15.
|
|
11
|
|
|
1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 86, 88, 89, 91, 92, 94, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 119
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) - 15*floor((n-1)/8) - 2*((n-1) mod 8) has period 8, repeating [1,0,0,1,0,1,1,0].
Numbers whose odd part is 7-rough: products of terms of A007775 and powers of 2 (terms of A000079). - Peter Munn, Aug 04 2020
The asymptotic density of this sequence is 8/15. - Amiram Eldar, Oct 18 2020
|
|
LINKS
|
|
|
FORMULA
|
a(n+8) = a(n) + 15.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor(2*phi*(f(n+1)+2)) -2*floor(phi*(f(n+1)+2)), where f(n) = (n-1) mod 8 and phi=(1+sqrt(5))/2.
a(n) = 15*floor((n-1)/8) +2*f(n) +floor((2*f(n)+5)/5) -floor((f(n)+2)/3), where f(n) = (n-1) mod 8.
G.f.: x*(1 +x +2*x^2 +3*x^3 +x^4 +3*x^5 +2*x^6 +x^7 +x^8) / ((1-x)^2*(1+x)*(1+x^2)*(1+x^4)). -
a(n) = a(n-1) +a(n-8) -a(n-9) for n>9. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*sqrt(7 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/15. - Amiram Eldar, Dec 13 2021
|
|
MAPLE
|
for n from 1 to 500 do if n mod 3<>0 and n mod 5<>0 then print(n) fi od
|
|
MATHEMATICA
|
Select[Range[120], GCD[#, 15] == 1 &] (* or *) t = 70; CoefficientList[Series[(1 + x + 2 x^2 + 3 x^3 + x^4 + 3 x^5 + 2 x^6 + x^7 + x^8)/((1 - x)^2 (1 + x) (1 + x^2) (1 + x^4)) , {x, 0, t}], x] (* Bruno Berselli, Oct 01 2013 *)
Select[Range[120], CoprimeQ[#, 15]&] (* Harvey P. Dale, Oct 31 2013 *)
|
|
PROG
|
(Magma) [n: n in [1..120] | IsOne(GCD(n, 15))]; // Bruno Berselli, Oct 01 2013
(Sage) [i for i in range(120) if gcd(i, 15) == 1] # Bruno Berselli, Oct 01 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|