login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160542
Not divisible by 11
7
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 111, 112
OFFSET
1,2
COMMENTS
Contains numbers like 100, 111, 112, 113 which are not in A043096. [R. J. Mathar, May 20 2009]
FORMULA
a(n) = a(n-10) + 11, n>10. - R. J. Mathar, May 20 2009
G.f.: x*(1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^10) / ( (1+x)*(1+x+x^2+x^3+x^4)*(x^4-x^3+x^2-x+1)*(x-1)^2 ). - R. J. Mathar, May 02 2014
MAPLE
A160541 := proc(n)
option remember ;
if n <= 10 then
n;
else
procname(n-10)+11 ;;
end if;
end proc:
seq(A160541(n), n=1..100) ; # R. J. Mathar, Aug 05 2022
MATHEMATICA
Select[Table[n, {n, 200}], Mod[#, 11]!=0&] (* Vladimir Joseph Stephan Orlovsky, Feb 18 2011*)
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12}, 70] (* Harvey P. Dale, Sep 16 2020 *)
PROG
(Sage) [i for i in range(72) if gcd(11, i) == 1]
CROSSREFS
Sequence in context: A051882 A136002 A059543 * A241158 A241157 A043096
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, May 18 2009
STATUS
approved