login
A059009
Numbers having an odd number of zeros in their binary expansion.
15
0, 2, 5, 6, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 128, 131
OFFSET
0,2
COMMENTS
Positions of ones in A059448 for n >= 1. - John Keith, Mar 09 2022
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..25000 (terms 0..1000 from T. D. Noe)
Jeffrey Shallit, Additive Number Theory via Automata and Logic, arXiv:2112.13627 [math.NT], 2021.
FORMULA
a(0) = 0, a(2*n) = -a(n) + 6*n + 1, a(2*n+1) = a(n) + 2*n + 2. a(n) = 2*n + 1/2(1-(-1)^A023416(n)) = 2*n + A059448(n). - Ralf Stephan, Sep 17 2003
EXAMPLE
18 is in the sequence because 18 = 10010_2. '10010' has three zeros. - Indranil Ghosh, Feb 04 2017
MAPLE
a:= proc(n) option remember;
if n::even then -a(n/2) + 3*n + 1 else a((n-1)/2) + n + 1 fi
end proc:
a(0):= 0:
seq(a(n), n=0..100); # Robert Israel, Feb 23 2016
MATHEMATICA
Select[Range[0, 150], OddQ[Count[IntegerDigits[#, 2], 0]]&] (* Harvey P. Dale, Oct 22 2011 *)
PROG
(PARI) is(n)=hammingweight(bitneg(n, #binary(n)))%2 \\ Charles R Greathouse IV, Mar 26 2013
(PARI) a(n) = if(n==0, 0, 2*n + (logint(n, 2) - hammingweight(n) + 1) % 2); \\ Kevin Ryde, Mar 11 2021
(Haskell)
a059009 n = a059009_list !! (n-1)
a059009_list = filter (odd . a023416) [1..]
-- Reinhard Zumkeller, Jan 21 2014
(Python)
i=j=0
while j<=800:
if bin(i)[2:].count("0")%2:
print(str(j)+" "+str(i))
j+=1
i+=1 # Indranil Ghosh, Feb 04 2017
(R)
maxrow <- 4 # by choice
onezeros <- 1
for(m in 1:(maxrow+1)){
row <- onezeros[2^(m-1):(2^m-1)]
onezeros <- c(onezeros, c(1-row, row) )
}
a <- which(onezeros == 0)
a
# Yosu Yurramendi, Mar 28 2017
KEYWORD
nonn,base,easy,nice
AUTHOR
Patrick De Geest, Dec 15 2000
STATUS
approved