login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059448
The parity of the number of zero digits when n is written in binary.
15
0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1
OFFSET
1,1
COMMENTS
Old name was: "If A_k are the terms from 2^(k-1) through to 2^k-1, then A_(k+1) is B_k A_k where B_k is A_k with 0's and 1's swapped, starting from a(1)=0; also parity of number of zero digits when n is written in binary. a(0) not given as it could be 1 or 0 depending on the definition or formula used." - Michel Dekking, Sep 11 2020
The sequence (when prefixed by 0) is overlap-free [Allouche and Shallit].
From Vladimir Shevelev, May 23 2017: (Start)
Theorem: The sequence is cubefree.
Here we show only that the sequence contains no three consecutive equal terms. Indeed, using the recursions below, we have
a(4*n)=a(n), a(4*n+1)=1-a(n), a(4*n+2)=1-a(n), a(4*n+3)=a(n), n >= 1, and our statement easily follows. In general, the Theorem could be proved either directly (cf. A269027) or using the remark below from Jeffrey Shallit and the well-known fact [first proved not later than 1912 by Axel Thue (private communication from Jean-Paul Allouche)] that the Thue-Morse sequence is cubefree.
Note that, by the formulas modulo 4, the sequence is constructed over four terms {a(4*n),a(4*n+1),a(4*n+2),a(4*n+3)} which, starting with a(4), are either {0,1,1,0} or {1,0,0,1}, the first elements of which form {a(n)}. (End)
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 26, Problem 23.
LINKS
Jeffrey Shallit, Arseny M. Shur, and Stefan Zorcic, New constructions for 3-free and 3+-free binary morphisms, arXiv:2310.15064 [math.CO], 2023. Mentions this sequence.
FORMULA
a(2n) = 1 - a(n); a(2n+1) = a(n) = 1 - a(2n). If 2^k <= n < 2^(k+1) then a(n) = 1 - a(n-2^(k-1)). a(n) = A023416(n) mod 2 = A059009(n) - 2n = 2n + 1 - A059010(n) = |A010060(n) - A030300(n-1)|.
Let b(1)=1 and b(n) = b(n-ceiling(n/2)) - b(n-floor(n/2)); then for n >= 1, a(n) = (1/2)*(1-b(2n+1)). - Benoit Cloitre, Apr 26 2005
Alternatively, if x is the sequence, then x = 010 mu^2(x), where mu is the Thue-Morse morphism sending 0 to 01 and 1 to 10. - Jeffrey Shallit, Jun 06 2016
a(n) = A010059(A054429(n)) = (1+A008836(A163511(n)))/2. - Antti Karttunen, May 30 2017
Alternatively, if x is the sequence, then x = 0 tau(x), where tau is the "twisted" Thue-Morse morphism sending 0 to 10 and 1 to 01. Note that tau^2 = mu^2, giving x = 010 mu^2(x). - Michel Dekking, Sep 30 2020
MAPLE
s1:=[];
for n from 1 to 200 do
t1:=convert(n, base, 2); t2:=subs(1=NULL, t1); s1:=[op(s1), nops(t2) mod 2]; od:
s1;
MATHEMATICA
Table[Boole[OddQ[Count[IntegerDigits[n, 2], 0]]], {n, 1, 105}] (* Jean-François Alcover, Apr 05 2013 *)
PROG
(PARI)
a(n)=(#binary(n)-hammingweight(n))%2;
vector(99, n, a(n)) /* Joerg Arndt, Sep 11 2020 */
(Haskell)
a059448 = (`mod` 2) . a023416 -- Reinhard Zumkeller, Mar 01 2012
(Python)
def A059448(n): return (n.bit_length()^n.bit_count())&1 # Chai Wah Wu, Jul 26 2023
CROSSREFS
Characteristic function of A059009.
Cf. A298952 (complement), A242179 (values +-1).
Sequence in context: A082401 A157238 A337546 * A283318 A288633 A284775
KEYWORD
nice,nonn
AUTHOR
Henry Bottomley, Feb 02 2001
EXTENSIONS
Name changed by Michel Dekking, Sep 11 2020
STATUS
approved