login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283318
Image of 0 under repeated applications of the morphism 0 -> 0,1,0,0, 1 -> 1,1,0,1.
2
0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1
OFFSET
1
REFERENCES
Bernardino, André, Rui Pacheco, and Manuel Silva. "Coloring factors of substitutive infinite words." Discrete Mathematics 340.3 (2017): 443-451. See Example 3.
LINKS
A. Bernardino, M. Silva, R. Pacheco, Coloring factors of substitutive infinite words, arXiv:1605.09343 [math.CO], 2016. See Example 3.
FORMULA
From Robert Israel, Mar 15 2017: (Start)
a(n) = a(4n) = a(4n-3).
a(4n-1) = 0.
a(4n-2) = 1.
G.f. g(x) satisfies g(x) = (1+1/x^3) g(x^4) + x^2/(1-x^4). (End)
MAPLE
with(ListTools);
psi:=proc(S)
Flatten(subs( {0=[0, 1, 0, 0], 1=[1, 1, 0, 1]}, S));
end;
S:=[0];
for n from 1 to 6 do S:=psi(S): od:
S;
MATHEMATICA
SubstitutionSystem[{0 -> {0, 1, 0, 0}, 1 -> {1, 1, 0, 1}}, {0}, 4] // Last (* Jean-François Alcover, Jan 21 2018 *)
CROSSREFS
Sequence in context: A157238 A337546 A059448 * A288633 A284775 A156259
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 09 2017
STATUS
approved