The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A030300 Runs have lengths 2^n, n >= 0. 12
 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS An example of a sequence with property that the fraction of 1's in the first n terms does not converge to a limit. - N. J. A. Sloane, Sep 24 2007 Image, under the coding sending a,d,e -> 1 and b,c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cd, c -> ee, d -> eb, e -> cc. - Jeffrey Shallit, May 14 2016 This sequence taken as digits of a base-b fraction is g(1/b) = Sum_{n>=1} a(n)/b^n = b/(b-1) * Sum_{k>=0} (-1)^k/b^(2^k) per the generating function below.  With initial 0, it is binary expansion .01001111 = A275975.  With initial 0 and digits 2*a(n), it is ternary expansion .02002222 = A160386.  These and in general g(1/b) for any integer b>=2 are among forms which Kempner showed are transcendental. - Kevin Ryde, Sep 07 2019 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 Aubrey J. Kempner, On Transcendental Numbers, Transactions of the American Mathematical Society, volume 17, number 4, October 1916, pages 476-482. Kevin Ryde, Plot of A079947(n)/n, illustrating proportion of 1s in the first n terms here does not converge (but oscillates with rises and falls by hyperbolas) R. Stephan, Some divide-and-conquer sequences ... R. Stephan, Table of generating functions R. Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003. FORMULA a(n) = (1/2)*(1+(-1)^floor(log_2(n))). - Benoit Cloitre, Feb 22 2003 G.f.: 1/(1-x) * Sum_{k>=0} (-1)^k*x^2^k. - Ralf Stephan, Jul 12 2003 a(n) = 1 - a(floor(n/2)). - Vladeta Jovovic, Aug 04 2003 a(n) = A115253(2n, n) mod 2. - Paul Barry, Jan 18 2006 a(n) = 1 - A030301(n). - Antti Karttunen, Oct 10 2017 MAPLE f0 := n->[seq(0, i=1..2^n)]; f1 := n->[seq(1, i=1..2^n)]; s := []; for i from 0 to 4 do s := [op(s), op(f1(2*i)), op(f0(2*i+1))]; od: A030300 := s; MATHEMATICA nMax = 6; Table[1 - Mod[n, 2], {n, 0, nMax}, {2^n}] // Flatten (* Jean-François Alcover, Oct 20 2016 *) PROG (PARI) a(n) = if(n, !(logint(n, 2)%2)); /* Kevin Ryde, Aug 02 2019 */ CROSSREFS Cf. A030301. Partial sums give A079947. a(n) = A065359(n) + A083905(n). Characteristic function of A053738. Sequence in context: A116937 A267810 A267927 * A168394 A072770 A071674 Adjacent sequences:  A030297 A030298 A030299 * A030301 A030302 A030303 KEYWORD nonn,base,easy AUTHOR Jean-Paul Delahaye (Jean-Paul.Delahaye(AT)lifl.fr) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:45 EDT 2020. Contains 336434 sequences. (Running on oeis4.)