

A160386


Decimal expansion of Sum_{n>=0}(1)^n/3^(2^n).


4



2, 3, 4, 4, 1, 5, 5, 0, 8, 6, 7, 4, 8, 6, 4, 6, 1, 4, 4, 1, 3, 4, 1, 5, 4, 7, 4, 3, 4, 5, 6, 0, 4, 5, 9, 7, 6, 1, 4, 7, 2, 4, 5, 6, 3, 9, 0, 6, 6, 9, 3, 0, 2, 7, 6, 7, 9, 4, 2, 7, 7, 3, 7, 0, 9, 8, 3, 8, 1, 4, 3, 1, 5, 1, 3, 7, 5, 8, 5, 3, 5, 3, 1, 0, 3, 7, 5, 6, 5, 6, 5, 9, 8, 4, 9, 7, 6, 5, 9, 8, 4, 4, 0, 6, 4
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

This sum is among forms which Kempner showed are transcendental.  Kevin Ryde, Sep 16 2019


LINKS

Harry J. Smith, Table of n, a(n) for n = 0..20000
Aubrey J. Kempner, On Transcendental Numbers, Transactions of the American Mathematical Society, Vol. 17, No. 4 (October 1916), pp. 476482.
Index entries for transcendental numbers


EXAMPLE

0.234415508674864614413415474345604597614724563906693027679427737098381...


PROG

(PARI) { default(realprecision, 20080); x=10*suminf(n=0, (1)^n/3^(2^n)); for (n=0, 20000, d=floor(x); x=(xd)*10; write("b160386.txt", n, " ", d)); }


CROSSREFS

Cf. A006467 (continued fraction), A030300 (ternary expansion).
Sequence in context: A172160 A171170 A256913 * A307310 A174015 A014292
Adjacent sequences: A160383 A160384 A160385 * A160387 A160388 A160389


KEYWORD

nonn,cons


AUTHOR

Harry J. Smith, May 12 2009


STATUS

approved



