login
A307310
Expansion of Product_{k>=1} (1 - x^k/(1 - x)^k).
4
1, -1, -2, -3, -4, -4, -1, 9, 34, 89, 200, 409, 779, 1394, 2339, 3624, 4974, 5323, 1682, -13279, -56222, -163136, -408768, -943275, -2059237, -4310179, -8712425, -17072901, -32486302, -60006278, -107341413, -184979170, -303998680, -467127625, -642495990, -696247140
OFFSET
0,3
COMMENTS
First differences of the binomial transform of A010815.
Convolution inverse of A218482.
MAPLE
a:=series(mul((1-x^k/(1-x)^k), k=1..100), x=0, 35): seq(coeff(a, x, n), n=0..34); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 35; CoefficientList[Series[Product[(1 - x^k/(1 - x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 02 2019
STATUS
approved