login
A129519
First differences of the binomial transform of the distinct partition numbers (A000009).
21
1, 1, 2, 5, 12, 28, 65, 151, 350, 807, 1850, 4221, 9597, 21760, 49215, 111032, 249856, 560835, 1255854, 2805969, 6256784, 13925698, 30941050, 68634679, 152009239, 336152787, 742276931, 1636747349, 3604206106, 7926412320, 17410413153
OFFSET
0,3
LINKS
FORMULA
G.f.: A(x) = Product_{n>=1} [1 + x^n/(1-x)^n].
a(n) = A266232(n) - A266232(n-1), for n>0. - Vaclav Kotesovec, Oct 30 2017
a(n) ~ exp(Pi*sqrt(n/6) + Pi^2/48) * 2^(n - 9/4) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 30 2017
EXAMPLE
Product formula is illustrated by:
A(x) = [1 + x + x^2 + x^3 + x^4 + x^5 +...]*
[1 + x^2 + 2x^3 + 3x^4 + 4x^5 + 5x^6 +...]*
[1 + x^3 + 3x^4 + 6x^5 + 10x^6 + 15x^7 +...]*
[1 + x^4 + 4x^5 + 10x^6 + 20x^7 + 35x^8 +...]*
[1 + x^5 + 5x^6 + 15x^7 + 35x^8 + 70x^9 +...]*...*
[1 + Sum_{k>=n+1} C(k-1,n)*x^k ]*...
MATHEMATICA
Flatten[{1, Differences[Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 40}]]}] (* Vaclav Kotesovec, Oct 30 2017 *)
PROG
(PARI) {a(n)=polcoeff(prod(k=0, n, 1+sum(i=k+1, n, binomial(i-1, k)*x^i +x*O(x^n))), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2007
STATUS
approved