login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A266232 Binomial transform of the number of partitions into distinct parts (A000009). 21
1, 2, 4, 9, 21, 49, 114, 265, 615, 1422, 3272, 7493, 17090, 38850, 88065, 199097, 448953, 1009788, 2265642, 5071611, 11328395, 25254093, 56195143, 124829822, 276839061, 612991848, 1355268779, 2992016128, 6596222234, 14522634554, 31933047707, 70130243427
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
LINKS
FORMULA
a(n) ~ 2^(n-5/4) * exp(Pi*sqrt(n/6) + Pi^2/48) / (3^(1/4)*n^(3/4)).
G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^k/(1 - x)^k). - Ilya Gutkovskiy, Aug 19 2018
MATHEMATICA
Table[Sum[Binomial[n, k]*PartitionsQ[k], {k, 0, n}], {n, 0, 50}]
nmax = 30; CoefficientList[Series[Sum[PartitionsQ[k] * x^k / (1-x)^(k+1), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 31 2022 *)
CROSSREFS
Sequence in context: A281425 A101891 A119967 * A052921 A219150 A322325
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Dec 25 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 13:45 EDT 2024. Contains 376012 sequences. (Running on oeis4.)