|
|
A294500
|
|
Binomial transform of the number of planar partitions (A000219).
|
|
10
|
|
|
1, 2, 6, 19, 60, 185, 559, 1662, 4875, 14134, 40564, 115370, 325465, 911355, 2534595, 7004827, 19246626, 52596377, 143006632, 386984573, 1042537831, 2796803110, 7473161196, 19893461042, 52767059608, 139488323734, 367540167625, 965445514862, 2528516552660
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Let 0 < p < 1, r > 0, v > 0, f(n) = v*exp(r*n^p)/n^b, then
Sum_{k=0..n} binomial(n,k) * f(k) ~ f(n/2) * 2^n * exp(g(n)), where
g(n) = p^2 * r^2 * n^p / (2^(1+2*p)*n^(1-p) + p*r*(1-p)*2^(1+p)).
Special cases:
p < 1/2, g(n) = 0
p = 1/2, g(n) = r^2/16
p = 2/3, g(n) = r^2 * n^(1/3) / (9 * 2^(1/3)) - r^3/81
p = 3/4, g(n) = 9*r^2*sqrt(n)/(64*sqrt(2)) - 27*r^3*n^(1/4)/(2048*2^(1/4)) + 81*r^4/65536
p = 3/5, g(n) = 9*r^2*n^(1/5)/(100*2^(1/5))
p = 4/5, g(n) = 2^(7/5)*r^2*n^(3/5)/25 - 4*2^(3/5)*r^3*n^(2/5)/625 + 8*2^(4/5)*r^4*n^(1/5)/15625 - 32*r^5/390625
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=0..n} binomial(n,k) * A000219(k).
a(n) ~ exp(1/12 + 3 * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3) + Zeta(3)^(2/3) * n^(1/3) / 2^(5/3) - Zeta(3)/12) * 2^(n + 7/18) * Zeta(3)^(7/36) / (A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.
G.f.: (1/(1 - x))*exp(Sum_{k>=1} sigma_2(k)*x^k/(k*(1 - x)^k)). - Ilya Gutkovskiy, Aug 20 2018
|
|
MATHEMATICA
|
nmax = 40; s = CoefficientList[Series[Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]; Table[Sum[Binomial[n, k] * s[[k+1]], {k, 0, n}], {n, 0, nmax}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|