login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A208481
Diagonal sums of triangle A185384.
2
1, 2, 6, 19, 60, 188, 589, 1846, 5786, 18135, 56840, 178152, 558377, 1750106, 5485310, 17192459, 53885860, 168892996, 529356757, 1659148590, 5200224626, 16298923631, 51085276240, 160115201936, 501844754065, 1572918462066, 4929955864374, 15451827549123
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*F(2*n-3*k+1), where F(n) are the Fibonacci numbers (A000045).
G.f.: (1 - x)/(1 - 3*x - x^3 - x^4).
a(n) = 3*a(n-1) + a(n-3) + a(n-4).
MATHEMATICA
Table[Sum[Binomial[n-k, k]Fibonacci[2n-3k+1], {k, 0, Floor[n/2]}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(n-k, k)*fib(2*n-3*k+1), k, 0, floor(n/2)), n, 0, 27);
CROSSREFS
Cf. A185384.
Sequence in context: A183188 A118364 A294500 * A052544 A204200 A371708
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Feb 29 2012
STATUS
approved