OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,0,1,1).
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*F(2*n-3*k+1), where F(n) are the Fibonacci numbers (A000045).
G.f.: (1 - x)/(1 - 3*x - x^3 - x^4).
a(n) = 3*a(n-1) + a(n-3) + a(n-4).
MATHEMATICA
Table[Sum[Binomial[n-k, k]Fibonacci[2n-3k+1], {k, 0, Floor[n/2]}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(binomial(n-k, k)*fib(2*n-3*k+1), k, 0, floor(n/2)), n, 0, 27);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Feb 29 2012
STATUS
approved