login
A208479
Total sum of the numbers of partitions with positive k-th ranks of all partitions of n.
6
0, 2, 3, 6, 10, 18, 27, 45, 65, 99, 141, 206, 285, 403, 549, 754, 1011, 1364, 1800, 2388, 3116, 4072, 5257, 6791, 8678, 11093, 14058, 17800, 22380, 28111, 35087, 43748, 54256, 67189, 82831, 101962, 124997, 153011, 186632, 227281, 275905, 334418, 404159, 487714
OFFSET
1,2
COMMENTS
For the definition of k-th rank see A208478.
EXAMPLE
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so the total sum is a(4) = 2+1+2+1 = 6.
CROSSREFS
Row sums of A208478.
Sequence in context: A026779 A081028 A325232 * A065441 A075531 A066067
KEYWORD
nonn
AUTHOR
Omar E. Pol, Mar 07 2012
EXTENSIONS
More terms from Alois P. Heinz, Mar 11 2012
STATUS
approved