|
|
A026779
|
|
a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026769.
|
|
11
|
|
|
1, 1, 2, 3, 6, 10, 17, 32, 56, 97, 181, 322, 567, 1053, 1892, 3369, 6241, 11286, 20255, 37463, 68044, 122809, 226896, 413376, 749159, 1382990, 2525162, 4590351, 8468738, 15487526, 28218889, 52035094, 95273724, 173898941
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
MAPLE
|
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc;
seq(add(T(n-k, k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
|
|
MATHEMATICA
|
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Nov 01 2019 *)
|
|
PROG
|
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 01 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|