login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026779 a(n) = Sum_{k=0..floor(n/2)} T(n-k,k), T given by A026769. 11
1, 1, 2, 3, 6, 10, 17, 32, 56, 97, 181, 322, 567, 1053, 1892, 3369, 6241, 11286, 20255, 37463, 68044, 122809, 226896, 413376, 749159, 1382990, 2525162, 4590351, 8468738, 15487526, 28218889, 52035094, 95273724, 173898941
(list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc;
seq(add(T(n-k, k), k=0..floor(n/2)), n=0..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[Sum[T[n-k, k], {k, 0, Floor[n/2]}], {n, 0, 30}] (* G. C. Greubel, Nov 01 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[sum(T(n-k, k) for k in (0..floor(n/2))) for n in (0..30)] # G. C. Greubel, Nov 01 2019
CROSSREFS
Sequence in context: A233268 A026397 A193200 * A081028 A325232 A208479
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 23:03 EDT 2024. Contains 376002 sequences. (Running on oeis4.)