login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026770
a(n) = T(2n,n), T given by A026769.
11
1, 2, 7, 28, 120, 538, 2493, 11854, 57558, 284392, 1426038, 7241356, 37173304, 192638992, 1006564439, 5297715628, 28061959428, 149491856978, 800425486692, 4305263668514, 23251846197766, 126044501870378, 685569373724964, 3740339567665558, 20463965229643218, 112250484320225118
OFFSET
0,2
COMMENTS
Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when below the diagonal, (1,1). - Alois P. Heinz, Sep 14 2016
LINKS
FORMULA
O.g.f.: 1/(1-x*(C(x)+S(x))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Dec 02 2015
MAPLE
seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 24 2019 *)
PROG
(PARI) { C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* Max Alekseyev, Dec 02 2015 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // G. C. Greubel, Nov 01 2019
(Sage)
def A026770_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list()
A026770_list(30) # G. C. Greubel, Nov 01 2019
KEYWORD
nonn
STATUS
approved