OFFSET
0,2
COMMENTS
Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when below the diagonal, (1,1). - Alois P. Heinz, Sep 14 2016
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
O.g.f.: 1/(1-x*(C(x)+S(x))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Dec 02 2015
MAPLE
seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];
a[n_] := T[2n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 24 2019 *)
PROG
(PARI) { C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* Max Alekseyev, Dec 02 2015 */
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // G. C. Greubel, Nov 01 2019
(Sage)
def A026770_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list()
A026770_list(30) # G. C. Greubel, Nov 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved