The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026770 a(n) = T(2n,n), T given by A026769. 11
 1, 2, 7, 28, 120, 538, 2493, 11854, 57558, 284392, 1426038, 7241356, 37173304, 192638992, 1006564439, 5297715628, 28061959428, 149491856978, 800425486692, 4305263668514, 23251846197766, 126044501870378, 685569373724964, 3740339567665558, 20463965229643218, 112250484320225118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Number of lattice paths from (0,0) to (n,n) with steps (0,1), (1,0) and, when below the diagonal, (1,1). - Alois P. Heinz, Sep 14 2016 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA O.g.f.: 1/(1-x*(C(x)+S(x))), where C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108 and S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318. - Max Alekseyev, Dec 02 2015 MAPLE seq(coeff(series(2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)), x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019 MATHEMATICA T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]]; a[n_] := T[2n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 24 2019 *) PROG (PARI) { C = (1-sqrt(1-4*x+O(x^51)))/2/x; S = (1-x-sqrt(1-6*x+x^2 +O(x^51)))/2/x; Vec(1/(1-x*(C+S))) } /* Max Alekseyev, Dec 02 2015 */ (MAGMA) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 2/(x + Sqrt(1-4*x) + Sqrt(1-6*x+x^2)) )); // G. C. Greubel, Nov 01 2019 (Sage) def A026770_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P( 2/(x + sqrt(1-4*x) + sqrt(1-6*x+x^2)) ).list() A026770_list(30) # G. C. Greubel, Nov 01 2019 CROSSREFS Cf. A000108, A006318, A026781, A104625, A109980. Cf. A026769, A026771, A026772, A026773, A026774, A026775, A026776, A026777, A026778, A026779. Sequence in context: A150656 A150657 A150658 * A241371 A010683 A276852 Adjacent sequences:  A026767 A026768 A026769 * A026771 A026772 A026773 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 24 09:40 EST 2020. Contains 332209 sequences. (Running on oeis4.)