The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010683 Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ....} and never pass below y = x. Sequence gives S(n-1,n) = number of 'Schröder' trees with n+1 leaves and root of degree 2. 13
 1, 2, 7, 28, 121, 550, 2591, 12536, 61921, 310954, 1582791, 8147796, 42344121, 221866446, 1170747519, 6216189936, 33186295681, 178034219986, 959260792775, 5188835909516, 28167068630713, 153395382655222 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = number of compound propositions "on the negative side" that can be made from n simple propositions. Convolution of A001003 (the little Schröder numbers) with itself. - Emeric Deutsch, Dec 27 2003 Number of dissections of a convex polygon with n+3 sides that have a triangle over a fixed side (the base) of the polygon. - Emeric Deutsch, Dec 27 2003 a(n-1) = number of royal paths from (0,0) to (n,n), A006318, with exactly one diagonal step on the line y=x. - David Callan, Mar 14 2004 Number of short bushes (i.e., ordered trees with no vertices of outdegree 1) with n+2 leaves and having root of degree 2. Example: a(2)=7 because, in addition to the five binary trees with 6 edges (they do have 4 leaves) we have (i) two edges rb, rc hanging from the root r with three edges hanging from vertex b and (ii) two edges rb, rc hanging from the root r with three edges hanging from vertex c. - Emeric Deutsch, Mar 16 2004 The a(n) equal the Fi2 sums, see A180662, of Schröder triangle A033877. - Johannes W. Meijer, Mar 26 2012 Row sums of A144944 and of A186826. - Reinhard Zumkeller, May 11 2013 LINKS T. D. Noe, Table of n, a(n) for n=0..200 A. Bacher, Directed and multi-directed animals on the square lattice with next nearest neighbor edges, arXiv preprint arXiv:1301.1365 [math.CO], 2013-2015. See R(t). D. Birmajer, J. B. Gil, M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015. Kevin Brown, Hipparchus on Compound Statements, 1994-2010. Laurent Habsieger, Maxim Kazarian and Sergei Lando, On the second number of Plutarch, Am. Math. Monthly, Vol. 105, No. 5 (May, 1998), p. 446. H. Kwong, On recurrences of Fahr and Ringel: An Alternate Approach, Fib. Quart., 48 (2010), 363-365; see p. 364. J. W. Meijer, Famous numbers on a chessboard, Acta Nova, Volume 4, No.4, December 2010. pp. 589-598. E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7. D. G. Rogers and L. W. Shapiro, Deques, trees and lattice paths, in Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference. Lecture Notes in Mathematics, Vol. 884 (Springer, Berlin, 1981), pp. 293-303. Math. Rev., 83g, 05038; Zentralblatt, 469(1982), 05005. See Figs. 7a and 8b. R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997. FORMULA G.f.: ((1-t)^2-(1+t)*sqrt(1-6*t+t^2))/(8*t^2) = A(t)^2, with o.g.f. A(t) of A001003. a(n) = (2/n)*sum(binomial(n, k)*binomial(n+k+1, k-1), k=1..n) = 2*hypergeom([1-n, n+3], , -1), n>=1. a(0)=1. - Wolfdieter Lang, Sep 12 2005. a(n) = ((2*n+1)*LegendreP(n+1,3) - (2*n+3)*LegendreP(n,3)) / (4*n*(n+2)) for n>0. - Mark van Hoeij, Jul 02 2010 Let M = the production matrix: 1, 2, 0, 0, 0, 0,... 1, 2, 1, 0, 0, 0,... 1, 2, 1, 2, 0, 0,... 1, 2, 1, 2, 1, 0,... 1, 2, 1, 2, 1, 2,... ... a(n) = upper entry in the vector (M(T))^n * [1,0,0,0,...]; where T is the transpose operation. - Gary W. Adamson, Jul 08 2011 D-finite with recurrence: (n+2)*(2*n-1)*a(n) = 6*(2*n^2-1)*a(n-1)-(n-2)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 07 2012 a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012 Recurrence (an alternative): (n+2)*a(n)  = (4-n)*a(n-4) + 2*(2*n-5)*a(n-3) + 10*(n-1)*a(n-2) + 2*(2*n+1)*a(n-1), n>=4. - Fung Lam, Feb 18 2014 a(n) = (n+1)*hypergeom([1-n, -n], , 2). - Peter Luschny, Nov 19 2014 a(n) = (A001003(n) + A001003(n+1))/2 = sum(A001003(k) * A001003(n-k), k=0..n). - Johannes W. Meijer, Apr 29 2015 MAPLE a := proc(n) local k: if n=0 then 1 else (2/n)*add(binomial(n, k)* binomial(n+k+1, k-1), k=1..n) fi: end: seq(a(n), n=0..21); # Johannes W. Meijer, Mar 26 2012, revised Mar 31 2015 MATHEMATICA f[ x_, y_ ] := f[ x, y ] = Module[ {return}, If[ x == 0, return = 1, If[ y == x-1, return = 0, return = f[ x, y-1 ] + Sum[ f[ k, y ], {k, 0, x-1} ] ] ]; return ]; (* Do[Print[Table[f[ k, j ], {k, 0, j}]], {j, 10, 0, -1}] *) Table[f[x, x + 1], {x, 0, 21}] (* Second program: *) a[n_] := 2*Hypergeometric2F1[1-n, n+3, 2, -1]; a=1; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 09 2014, after Wolfdieter Lang *) PROG (Haskell) a010683 = sum . a144944_row  -- Reinhard Zumkeller, May 11 2013 (Sage) a = lambda n: (n+1)*hypergeometric([1-n, -n], , 2) [simplify(a(n)) for n in range(22)] # Peter Luschny, Nov 19 2014 (PARI) x='x+O('x^100); Vec(((1-x)^2-(1+x)*sqrt(1-6*x+x^2))/(8*x^2)) \\ Altug Alkan, Dec 19 2015 CROSSREFS Cf. A001003. Second right-hand column of triangle A011117. A177010 has a closely-related g.f. Sequence in context: A150658 A026770 A241371 * A276852 A293266 A150659 Adjacent sequences:  A010680 A010681 A010682 * A010684 A010685 A010686 KEYWORD nonn,nice,easy AUTHOR Robert Sulanke (sulanke(AT)diamond.idbsu.edu), N. J. A. Sloane EXTENSIONS Minor edits by Johannes W. Meijer, Mar 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 05:53 EST 2020. Contains 338756 sequences. (Running on oeis4.)