login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010683
Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ...} and never pass below y = x. Sequence gives S(n-1,n) = number of 'Schröder' trees with n+1 leaves and root of degree 2.
15
1, 2, 7, 28, 121, 550, 2591, 12536, 61921, 310954, 1582791, 8147796, 42344121, 221866446, 1170747519, 6216189936, 33186295681, 178034219986, 959260792775, 5188835909516, 28167068630713, 153395382655222
OFFSET
0,2
COMMENTS
a(n) is the number of compound propositions "on the negative side" that can be made from n simple propositions.
Convolution of A001003 (the little Schröder numbers) with itself. - Emeric Deutsch, Dec 27 2003
Number of dissections of a convex polygon with n+3 sides that have a triangle over a fixed side (the base) of the polygon. - Emeric Deutsch, Dec 27 2003
a(n-1) = number of royal paths from (0,0) to (n,n), A006318, with exactly one diagonal step on the line y=x. - David Callan, Mar 14 2004
Number of short bushes (i.e., ordered trees with no vertices of outdegree 1) with n+2 leaves and having root of degree 2. Example: a(2)=7 because, in addition to the five binary trees with 6 edges (they do have 4 leaves) we have (i) two edges rb, rc hanging from the root r with three edges hanging from vertex b and (ii) two edges rb, rc hanging from the root r with three edges hanging from vertex c. - Emeric Deutsch, Mar 16 2004
The a(n) equal the Fi2 sums, see A180662, of Schröder triangle A033877. - Johannes W. Meijer, Mar 26 2012
Row sums of A144944 and of A186826. - Reinhard Zumkeller, May 11 2013
LINKS
A. Bacher, Directed and multi-directed animals on the square lattice with next nearest neighbor edges, arXiv preprint arXiv:1301.1365 [math.CO], 2013-2015. See R(t).
D. Birmajer, J. B. Gil, and M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
Kevin Brown, Hipparchus on Compound Statements, 1994-2010.
Anders Claesson, Giulio Cerbai, Dana C. Ernst, and Hannah Golab, Pattern-avoiding Cayley permutations via combinatorial species, arXiv:2407.19583 [math.CO], 2024.
Shishuo Fu, Zhicong Lin, and Yaling Wang, Refined Wilf-equivalences by Comtet statistics, arXiv:2009.04269 [math.CO], 2020.
Laurent Habsieger, Maxim Kazarian and Sergei Lando, On the second number of Plutarch, Am. Math. Monthly, Vol. 105, No. 5 (May, 1998), p. 446.
H. Kwong, On recurrences of Fahr and Ringel: An Alternate Approach, Fib. Quart., 48 (2010), 363-365; see p. 364.
J. W. Meijer, Famous numbers on a chessboard, Acta Nova, Volume 4, No.4, December 2010. pp. 589-598.
E. Pergola and R. A. Sulanke, Schroeder Triangles, Paths and Parallelogram Polyominoes, J. Integer Sequences, 1 (1998), #98.1.7.
D. G. Rogers and L. W. Shapiro, Deques, trees and lattice paths, in Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference. Lecture Notes in Mathematics, Vol. 884 (Springer, Berlin, 1981), pp. 293-303. Math. Rev., 83g, 05038; Zentralblatt, 469(1982), 05005. See Figs. 7a and 8b.
R. P. Stanley, Hipparchus, Plutarch, Schröder and Hough, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
FORMULA
G.f.: ((1-t)^2-(1+t)*sqrt(1-6*t+t^2))/(8*t^2) = A(t)^2, with o.g.f. A(t) of A001003.
From Wolfdieter Lang, Sep 12 2005: (Start)
a(n) = (2/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k+1, k-1).
a(n) = 2*hypergeometric2F1([1-n, n+3], [2], -1), n>=1. a(0)=1. (End)
a(n) = ((2*n+1)*LegendreP(n+1,3) - (2*n+3)*LegendreP(n,3)) / (4*n*(n+2)) for n>0. - Mark van Hoeij, Jul 02 2010
From Gary W. Adamson, Jul 08 2011: (Start)
Let M = the production matrix:
1, 2, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 2, 1, 2, 0, 0, ...
1, 2, 1, 2, 1, 0, ...
1, 2, 1, 2, 1, 2, ...
...
a(n) is the upper entry in the vector (M(T))^n * [1,0,0,0,...]; where T is the transpose operation. (End)
D-finite with recurrence: (n+2)*(2*n-1)*a(n) = 6*(2*n^2-1)*a(n-1) - (n-2)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 07 2012
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 07 2012
Recurrence (an alternative): (n+2)*a(n) = (4-n)*a(n-4) + 2*(2*n-5)*a(n-3) + 10*(n-1)*a(n-2) + 2*(2*n+1)*a(n-1), n >= 4. - Fung Lam, Feb 18 2014
a(n) = (n+1)*hypergeometric2F1([1-n, -n], [3], 2). - Peter Luschny, Nov 19 2014
a(n) = (A001003(n) + A001003(n+1))/2 = sum(A001003(k) * A001003(n-k), k=0..n). - Johannes W. Meijer, Apr 29 2015
MAPLE
a := proc(n) local k: if n=0 then 1 else (2/n)*add(binomial(n, k)* binomial(n+k+1, k-1), k=1..n) fi: end:
seq(a(n), n=0..21); # Johannes W. Meijer, Mar 26 2012, revised Mar 31 2015
MATHEMATICA
f[ x_, y_ ]:= f[ x, y ]= Module[ {return}, If[x==0, return =1, If[y==x-1, return =0, return= f[x, y-1] + Sum[f[k, y], {k, 0, x-1} ]]]; return];
(* Do[Print[Table[f[ k, j ], {k, 0, j}]], {j, 10, 0, -1}] *)
Table[f[x, x+1], {x, 0, 21}]
(* Second program: *)
a[n_] := 2*Hypergeometric2F1[1-n, n+3, 2, -1]; a[0]=1;
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Dec 09 2014, after Wolfdieter Lang *)
PROG
(Haskell)
a010683 = sum . a144944_row -- Reinhard Zumkeller, May 11 2013
(Sage)
a = lambda n: (n+1)*hypergeometric([1-n, -n], [3], 2)
[simplify(a(n)) for n in range(22)] # Peter Luschny, Nov 19 2014
(PARI) x='x+O('x^100); Vec(((1-x)^2-(1+x)*sqrt(1-6*x+x^2))/(8*x^2)) \\ Altug Alkan, Dec 19 2015
(Magma) [n le 2 select n else (6*(2*(n-1)^2-1)*Self(n-1) - (n-3)*(2*n-1)*Self(n-2))/((n+1)*(2*n-3)): n in [1..30]]; // G. C. Greubel, Mar 11 2023
CROSSREFS
Second right-hand column of triangle A011117.
A177010 has a closely-related g.f..
Sequence in context: A026770 A241371 A368970 * A276852 A352861 A293266
KEYWORD
nonn,nice,easy
AUTHOR
Robert Sulanke (sulanke(AT)diamond.idbsu.edu), N. J. A. Sloane
EXTENSIONS
Minor edits by Johannes W. Meijer, Mar 26 2012
STATUS
approved