Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #111 Jul 30 2024 05:34:48
%S 1,2,7,28,121,550,2591,12536,61921,310954,1582791,8147796,42344121,
%T 221866446,1170747519,6216189936,33186295681,178034219986,
%U 959260792775,5188835909516,28167068630713,153395382655222
%N Let S(x,y) = number of lattice paths from (0,0) to (x,y) that use the step set { (0,1), (1,0), (2,0), (3,0), ...} and never pass below y = x. Sequence gives S(n-1,n) = number of 'Schröder' trees with n+1 leaves and root of degree 2.
%C a(n) is the number of compound propositions "on the negative side" that can be made from n simple propositions.
%C Convolution of A001003 (the little Schröder numbers) with itself. - _Emeric Deutsch_, Dec 27 2003
%C Number of dissections of a convex polygon with n+3 sides that have a triangle over a fixed side (the base) of the polygon. - _Emeric Deutsch_, Dec 27 2003
%C a(n-1) = number of royal paths from (0,0) to (n,n), A006318, with exactly one diagonal step on the line y=x. - _David Callan_, Mar 14 2004
%C Number of short bushes (i.e., ordered trees with no vertices of outdegree 1) with n+2 leaves and having root of degree 2. Example: a(2)=7 because, in addition to the five binary trees with 6 edges (they do have 4 leaves) we have (i) two edges rb, rc hanging from the root r with three edges hanging from vertex b and (ii) two edges rb, rc hanging from the root r with three edges hanging from vertex c. - _Emeric Deutsch_, Mar 16 2004
%C The a(n) equal the Fi2 sums, see A180662, of Schröder triangle A033877. - _Johannes W. Meijer_, Mar 26 2012
%C Row sums of A144944 and of A186826. - _Reinhard Zumkeller_, May 11 2013
%H T. D. Noe, <a href="/A010683/b010683.txt">Table of n, a(n) for n=0..200</a>
%H A. Bacher, <a href="http://arxiv.org/abs/1301.1365">Directed and multi-directed animals on the square lattice with next nearest neighbor edges</a>, arXiv preprint arXiv:1301.1365 [math.CO], 2013-2015. See R(t).
%H D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="http://arxiv.org/abs/1503.05242">Colored partitions of a convex polygon by noncrossing diagonals</a>, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
%H Kevin Brown, <a href="http://www.mathpages.com/home/kmath397/kmath397.htm">Hipparchus on Compound Statements</a>, 1994-2010.
%H Anders Claesson, Giulio Cerbai, Dana C. Ernst, and Hannah Golab, <a href="https://arxiv.org/abs/2407.19583">Pattern-avoiding Cayley permutations via combinatorial species</a>, arXiv:2407.19583 [math.CO], 2024.
%H Shishuo Fu, Zhicong Lin, and Yaling Wang, <a href="https://arxiv.org/abs/2009.04269">Refined Wilf-equivalences by Comtet statistics</a>, arXiv:2009.04269 [math.CO], 2020.
%H Laurent Habsieger, Maxim Kazarian and Sergei Lando, <a href="http://www.jstor.org/stable/3109806">On the second number of Plutarch</a>, Am. Math. Monthly, Vol. 105, No. 5 (May, 1998), p. 446.
%H H. Kwong, <a href="https://www.fq.math.ca/Papers1/48-4/Kwong.pdf">On recurrences of Fahr and Ringel: An Alternate Approach</a>, Fib. Quart., 48 (2010), 363-365; see p. 364.
%H J. W. Meijer, <a href="https://www.ucbcba.edu.bo/Publicaciones/revistas/actanova/documentos/v4n4/Ensayos_Meijer2010_PI_.3r.pdf">Famous numbers on a chessboard</a>, Acta Nova, Volume 4, No.4, December 2010. pp. 589-598.
%H E. Pergola and R. A. Sulanke, <a href="https://cs.uwaterloo.ca/journals/JIS/PergolaSulanke/">Schroeder Triangles, Paths and Parallelogram Polyominoes</a>, J. Integer Sequences, 1 (1998), #98.1.7.
%H D. G. Rogers and L. W. Shapiro, <a href="http://dx.doi.org/10.1007/BFb0091826">Deques, trees and lattice paths</a>, in Combinatorial Mathematics VIII: Proceedings of the Eighth Australian Conference. Lecture Notes in Mathematics, Vol. 884 (Springer, Berlin, 1981), pp. 293-303. Math. Rev., 83g, 05038; Zentralblatt, 469(1982), 05005. See Figs. 7a and 8b.
%H R. P. Stanley, <a href="http://www-math.mit.edu/~rstan/papers/hip.pdf">Hipparchus, Plutarch, Schröder and Hough</a>, Am. Math. Monthly, Vol. 104, No. 4, p. 344, 1997.
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F G.f.: ((1-t)^2-(1+t)*sqrt(1-6*t+t^2))/(8*t^2) = A(t)^2, with o.g.f. A(t) of A001003.
%F From _Wolfdieter Lang_, Sep 12 2005: (Start)
%F a(n) = (2/n)*Sum_{k=1..n} binomial(n, k)*binomial(n+k+1, k-1).
%F a(n) = 2*hypergeometric2F1([1-n, n+3], [2], -1), n>=1. a(0)=1. (End)
%F a(n) = ((2*n+1)*LegendreP(n+1,3) - (2*n+3)*LegendreP(n,3)) / (4*n*(n+2)) for n>0. - _Mark van Hoeij_, Jul 02 2010
%F From _Gary W. Adamson_, Jul 08 2011: (Start)
%F Let M = the production matrix:
%F 1, 2, 0, 0, 0, 0, ...
%F 1, 2, 1, 0, 0, 0, ...
%F 1, 2, 1, 2, 0, 0, ...
%F 1, 2, 1, 2, 1, 0, ...
%F 1, 2, 1, 2, 1, 2, ...
%F ...
%F a(n) is the upper entry in the vector (M(T))^n * [1,0,0,0,...]; where T is the transpose operation. (End)
%F D-finite with recurrence: (n+2)*(2*n-1)*a(n) = 6*(2*n^2-1)*a(n-1) - (n-2)*(2*n+1)*a(n-2). - _Vaclav Kotesovec_, Oct 07 2012
%F a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(4*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 07 2012
%F Recurrence (an alternative): (n+2)*a(n) = (4-n)*a(n-4) + 2*(2*n-5)*a(n-3) + 10*(n-1)*a(n-2) + 2*(2*n+1)*a(n-1), n >= 4. - _Fung Lam_, Feb 18 2014
%F a(n) = (n+1)*hypergeometric2F1([1-n, -n], [3], 2). - _Peter Luschny_, Nov 19 2014
%F a(n) = (A001003(n) + A001003(n+1))/2 = sum(A001003(k) * A001003(n-k), k=0..n). - _Johannes W. Meijer_, Apr 29 2015
%p a := proc(n) local k: if n=0 then 1 else (2/n)*add(binomial(n, k)* binomial(n+k+1, k-1), k=1..n) fi: end:
%p seq(a(n), n=0..21); # _Johannes W. Meijer_, Mar 26 2012, revised Mar 31 2015
%t f[ x_, y_ ]:= f[ x, y ]= Module[ {return}, If[x==0, return =1, If[y==x-1, return =0, return= f[x,y-1] + Sum[f[k, y], {k,0,x-1} ]]]; return];
%t (* Do[Print[Table[f[ k, j ], {k, 0, j}]], {j, 10, 0, -1}] *)
%t Table[f[x, x+1], {x,0,21}]
%t (* Second program: *)
%t a[n_] := 2*Hypergeometric2F1[1-n, n+3, 2, -1]; a[0]=1;
%t Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Dec 09 2014, after _Wolfdieter Lang_ *)
%o (Haskell)
%o a010683 = sum . a144944_row -- _Reinhard Zumkeller_, May 11 2013
%o (Sage)
%o a = lambda n: (n+1)*hypergeometric([1-n, -n], [3], 2)
%o [simplify(a(n)) for n in range(22)] # _Peter Luschny_, Nov 19 2014
%o (PARI) x='x+O('x^100); Vec(((1-x)^2-(1+x)*sqrt(1-6*x+x^2))/(8*x^2)) \\ _Altug Alkan_, Dec 19 2015
%o (Magma) [n le 2 select n else (6*(2*(n-1)^2-1)*Self(n-1) - (n-3)*(2*n-1)*Self(n-2))/((n+1)*(2*n-3)): n in [1..30]]; // _G. C. Greubel_, Mar 11 2023
%Y Cf. A001003, A006318, A033877, A144944, A180662, A186826.
%Y Second right-hand column of triangle A011117.
%Y A177010 has a closely-related g.f..
%K nonn,nice,easy
%O 0,2
%A Robert Sulanke (sulanke(AT)diamond.idbsu.edu), _N. J. A. Sloane_
%E Minor edits by _Johannes W. Meijer_, Mar 26 2012