login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177010
G.f.: ((1-q)^2+(1+q)*sqrt(1-6*q+q^2))/2.
4
1, -2, -3, -8, -28, -112, -484, -2200, -10364, -50144, -247684, -1243816, -6331164, -32591184, -169376484, -887465784, -4682990076, -24864759744, -132745182724, -712136879944, -3837043171100, -20755343638064, -112668274522852, -613581530620888, -3351355226348668, -18354390999804832, -100771410237846404, -554536090460808680
OFFSET
0,2
LINKS
Harris Kwong, On recurrences of Fahr and Ringel: an alternate approach, Fibonacci Quart. 48 (2010), no. 4, 363-365; see p. 364.
MATHEMATICA
CoefficientList[Series[((1 - x)^2 + (1 + x) Sqrt[1 - 6 x + x^2])/2, {x, 0, 27}], x] (* Michael De Vlieger, Oct 12 2016 *)
CROSSREFS
Cf. A010683 (a closely-related g.f.)
Sequence in context: A091339 A006277 A186927 * A300484 A004106 A332030
KEYWORD
sign,changed
AUTHOR
N. J. A. Sloane, Dec 08 2010
STATUS
approved