login
A006277
a(n) = (a(n-1) + 1)*a(n-2).
(Formerly M0888)
7
1, 1, 2, 3, 8, 27, 224, 6075, 1361024, 8268226875, 11253255215681024, 93044467205527772332546875, 1047053135870867396062743192203958743681024, 97422501162981936223682742789520433197690551802305989766350860546875
OFFSET
0,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.7.
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, pp. 445-446.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. L. Davison and Jeffrey Shallit, Continued Fractions for Some Alternating Series, Monatsh. Math., Vol. 111 (1991), pp. 119-126.
FORMULA
Sum_{n>=0} 1/a(n) = 3. - Gerald McGarvey, Jul 20 2004
a(n) = floor(A243967^(phi^n) * A243968^((1-phi)^n)), where phi is the golden ratio (1+sqrt(5))/2. - Vaclav Kotesovec, Jan 19 2015
Sum_{k>=0} (-1)^k/(a(k)*a(k+1)) = A242724. - Amiram Eldar, May 15 2021
MAPLE
A006277 := proc(n) options remember; if n <= 1 then RETURN(1) else A006277(n-2)*(A006277(n-1)+1); fi; end;
MATHEMATICA
a=b=1; lst={a, b}; Do[AppendTo[lst, c=a*b+a]; a=b; b=c, {n, 0, 12}]; lst (* Vladimir Joseph Stephan Orlovsky, May 06 2010 *)
RecurrenceTable[{a[n]==a[n-2]*(1+a[n-1]), a[0]==1, a[1]==1}, a, {n, 0, 15}] (* Vaclav Kotesovec, Jan 19 2015 *)
nxt[{a_, b_}]:={b, a(b+1)}; NestList[nxt, {1, 1}, 15][[All, 1]] (* Harvey P. Dale, Jun 20 2021 *)
PROG
(Haskell)
a006277_list = 1 : scanl ((*) . (+ 1)) 2 a006277_list -- Jack Willis, Dec 22 2013
(Maxima) a(n) := if (n = 0 or n = 1) then 1 else a(n-2)*(a(n-1)+1) $
makelist(a(n), n, 0, 12); Emanuele Munarini, Mar 23 2017
(Magma) [n le 2 select 1 else (Self(n-1) + 1)*Self(n-2): n in [1..15]]; // Vincenzo Librandi, May 23 2019
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, May 06 2010
STATUS
approved