login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006276 Pierce expansion of (3 - sqrt(5))/2.
(Formerly M1298)
14
2, 4, 17, 19, 5777, 5779, 192900153617, 192900153619, 7177905237579946589743592924684177, 7177905237579946589743592924684179, 369822356418414944143680173221426891716916679027557977938929258031490127514207143830378340325399155217 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
From Peter Bala, Nov 22 2012: (Start)
For x in the open interval (0,1) define the map f(x) = 1 - x*floor(1/x). The n-th term (n >= 0) in the Pierce expansion of x is given by floor(1/f^(n)(x)), where f^(n)(x) denotes the n-th iterate of the map f, with the convention that f^(0)(x) = x.
Let x = (sqrt(5) - 1)/2, the reciprocal of the golden ratio, and let X = (3 - sqrt(5))/2 so that X = x^2. The Pierce expansion of X^(3^n) is [a(2*n), a(2*n+1), a(2*n+2), ...]. The Pierce expansion of x is A118242 = [1, a(0), a(1), a(2), ...]. The Pierce expansion of x^3 is [a(1), a(2), a(3), ...]. In general, the Pierce expansion of x^(3^n) for n >= 1 is [a(1)*a(3)*...*a(2*n-1), a(2*n), a(2*n+1), a(2*n+2), ...] = [sqrt(a(2*n) - 1), a(2*n), a(2*n+1), a(2*n+2), ...]. Some examples of the associated alternating series are given below.
(End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. A. Pierce, On an algorithm and its use in approximating roots of algebraic equations, Amer. Math. Monthly, Vol. 36 No. 10, (1929) p.523-525.
Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
Let c(0)=3, c(n+1) = c(n)^3-3*c(n) [A001999]; then this sequence is c(0)-1, c(0)+1, c(1)-1, c(1)+1, c(2)-1, c(2)+1, ......
a(n) = 2*F(2*3^floor(n/2)+1)-F(2*3^floor(n/2))-(-1)^n where F(k) denotes the k-th Fibonacci number A000045(k)
Let u(0)=(1+sqrt(5))/2 and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)). - Benoit Cloitre, Mar 09 2004
a(2*n) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) - 1.
a(2*n+1) = ((3 + sqrt(5))/2)^(3^n) + ((3 - sqrt(5))/2)^(3^n) + 1. - Peter Bala, Nov 22 2012
EXAMPLE
From Peter Bala, Nov 22 2012: (Start)
Let x = (sqrt(5) - 1)/2. We have the alternating series expansions
x = 1 - 1/2 + 1/(2*4) - 1/(2*4*17) + 1/(2*4*17*19) - ...
x^2 = 1/2 - 1/(2*4) + 1/(2*4*17) - 1/(2*4*17*19) + ...
x^6 = 1/17 - 1/(17*19) + 1/(17*19*5777) - ...
as well as
x^3 = 1/4 - 1/(4*17) + 1/(4*17*19) - 1/(4*17*19*5777) + ...
4*x^9 = 1/19 - 1/(19*5777) + 1/(19*5777*5779) - ...
4*19*x^27 = 1/5779 - 1/(5779*192900153617) + ....
(End)
MATHEMATICA
Table[c=2*3^Floor[n/2]; 2*Fibonacci[c+1]-Fibonacci[c]-(-1)^n, {n, 0, 10}] (* Harvey P. Dale, Oct 22 2013 *)
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[(3 - Sqrt[5])/2, 7!], 10] (* G. C. Greubel, Nov 14 2016 *)
PROG
(PARI) r=(1+sqrt(5))/2; for(n=1, 10, r=r/(r-floor(r)) print1(floor(r), ", "))
CROSSREFS
Cf. A118242.
Sequence in context: A208132 A254206 A118242 * A318367 A317488 A103051
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, May 19 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 07:53 EDT 2024. Contains 371964 sequences. (Running on oeis4.)