The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A243968 Decimal expansion of 'eta', a constant related to the second order quadratic recurrence q(0)=q(1)=1, q(n)=q(n-2)*(q(n-1)+1). 2
 1, 4, 2, 9, 8, 1, 5, 4, 9, 9, 9, 0, 0, 9, 9, 4, 5, 1, 9, 7, 0, 3, 9, 0, 6, 4, 4, 3, 7, 6, 2, 7, 6, 0, 9, 3, 1, 2, 6, 9, 2, 3, 8, 1, 5, 8, 8, 4, 7, 2, 5, 2, 4, 2, 3, 9, 5, 4, 8, 2, 1, 9, 4, 9, 6, 9, 6, 3, 6, 2, 6, 5, 4, 5, 4, 3, 7, 2, 8, 5, 6, 8, 8, 1, 1, 5, 8, 3, 6, 8, 9, 3, 8, 4, 7, 8, 1, 6, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.10 Quadratic recurrence constants, pp. 445-446. LINKS Table of n, a(n) for n=1..99. FORMULA q(n) = floor(xi^(phi^n)*eta^((1-phi)^n)) where phi is the golden ratio (1+sqrt(5))/2. EXAMPLE 1.42981549990099451970390644376276... MATHEMATICA digits = 99; n0 = 5; dn = 5; Clear[q]; q[0] = q[1] = 1; q[n_] := q[n] = q[n - 2] (q[n - 1] + 1); eta[n_] := eta[n] = ((q[n] - 1)^(-1/2 - Sqrt[5]/2)*(q[n + 1] - 1))^(-(1/((1/2*(1 - Sqrt[5]))^n*Sqrt[5]))); eta[n0]; eta[n = n0 + dn]; While[RealDigits[eta[n], 10, digits + 10] != RealDigits[eta[n - 5], 10, digits + 10], Print["n = ", n]; n = n + dn]; RealDigits[eta[n], 10, digits] // First CROSSREFS Cf. A006277, A243967 (xi). Sequence in context: A246380 A200639 A365255 * A104583 A278103 A249327 Adjacent sequences: A243965 A243966 A243967 * A243969 A243970 A243971 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jun 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 23:17 EDT 2024. Contains 374461 sequences. (Running on oeis4.)