login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243965
Number of Dyck paths of semilength n such that both consecutive patterns of Dyck paths of semilength 2 occur at least once.
3
0, 0, 0, 0, 2, 10, 44, 179, 702, 2701, 10278, 38866, 146450, 550817, 2070116, 7779655, 29248932, 110047905, 414446256, 1562538171, 5898049688, 22290789562, 84351810044, 319609669957, 1212552963576, 4606078246284, 17518748817596, 66712192842068, 254346235738120
OFFSET
0,5
COMMENTS
The consecutive patterns 1010, 1100 are counted. Here 1=Up=(1,1), 0=Down=(1,-1).
LINKS
FORMULA
a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 18 2014
EXAMPLE
a(4) = 2: 10101100, 11001010.
a(5) = 10: 1010101100, 1010110010, 1010111000, 1011001010, 1100101010, 1100110100, 1101001100, 1101011000, 1110001010, 1110010100.
Here 1=Up=(1,1), 0=Down=(1,-1).
MAPLE
b:= proc(x, y, t, s) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, `if`(s={}, 1, 0), `if`(nops(s)>x, 0, add(
b(x-1, y-1+2*j, irem(2*t+j, 8), s minus {2*t+j}), j=0..1))))
end:
a:= n-> b(2*n, 0, 0, {10, 12}):
seq(a(n), n=0..30);
MATHEMATICA
b[x_, y_, t_, s_] := b[x, y, t, s] = If[y<0 || y>x, 0, If[x == 0, If[s == {}, 1, 0], If[Length[s] > x, 0, Sum[b[x - 1, y - 1 + 2 j, Mod[2t + j, 8], s ~Complement~ {2t + j}], {j, 0, 1}]]]];
a[n_] := b[2n, 0, 0, {10, 12}];
a /@ Range[0, 30] (* Jean-François Alcover, Dec 21 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 16 2014
STATUS
approved