login
A099919
a(n) = F(3) + F(6) + F(9) + ... + F(3n), F(n) = Fibonacci numbers A000045.
15
0, 2, 10, 44, 188, 798, 3382, 14328, 60696, 257114, 1089154, 4613732, 19544084, 82790070, 350704366, 1485607536, 6293134512, 26658145586, 112925716858, 478361013020, 2026369768940, 8583840088782, 36361730124070, 154030760585064, 652484772464328, 2763969850442378
OFFSET
0,2
COMMENTS
Partial sum of the even Fibonacci numbers. - Vladimir Joseph Stephan Orlovsky, Nov 28 2010
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 25.
FORMULA
a(n) = (Fibonacci(3*n + 2) - 1)/2 = (A015448(n+1)-1)/2.
G.f.: 2*x/((1 - x)*(1 - 4*x - x^2)).
a(n) = (F(3n + 2) - 1)/2 = 2 * A049652(n).
a(n) = Sum_{0 <= j <= i <= n} binomial(i, j)*F(i + j). - Benoit Cloitre, May 21 2005
From Gary Detlefs, Dec 08 2010: (Start)
a(n) = 4*a(n - 1) + a(n - 2) + 2, n > 1.
a(n) = 5*a(n - 1) - 3*a(n - 2) - a(n - 3), n > 2.
a(n) = (Fibonacci(3*n + 3) + Fibonacci(3*n) - 2)/4. (End)
a(n) = (-10 + (5 - 3*sqrt(5))*(2 - sqrt(5))^n + (2 + sqrt(5))^n*(5 + 3*sqrt(5)))/20. - Colin Barker, Nov 26 2016
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + 3*sqrt(5)*sinh(sqrt(5)*x)) - 5)/10. - Stefano Spezia, Jun 03 2024
MATHEMATICA
CoefficientList[Series[2 x/((1 - x) (1 - 4 x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
LinearRecurrence[{5, -3, -1}, {0, 2, 10}, 30] (* G. C. Greubel, Jan 17 2018 *)
Accumulate[Fibonacci[3Range[0, 19]]] (* Alonso del Arte, Dec 23 2018 *)
PROG
(PARI) a(n) = sum(i=1, n, fibonacci(3*i)); \\ Michel Marcus, Mar 15 2014
(PARI) a(n) = fibonacci(3*n+2)\2 \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [(Fibonacci(3*n+2) - 1)/2: n in [0..30]]; // G. C. Greubel, Jan 17 2018
CROSSREFS
Partial sums of A014445.
Cf. A087635.
Case k = 3 of partial sums of fibonacci(k*n): A000071, A027941, A058038, A138134, A053606.
Sequence in context: A243965 A218780 A068551 * A100397 A084059 A339642
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 30 2004
EXTENSIONS
a(0) = 0 prepended by Joerg Arndt, Mar 13 2014
STATUS
approved