The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099919 a(n) = F(3) + F(6) + F(9) + ... + F(3n), F(n) = Fibonacci numbers A000045. 15
 0, 2, 10, 44, 188, 798, 3382, 14328, 60696, 257114, 1089154, 4613732, 19544084, 82790070, 350704366, 1485607536, 6293134512, 26658145586, 112925716858, 478361013020, 2026369768940, 8583840088782, 36361730124070 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sum of the even Fibonacci numbers. - Vladimir Joseph Stephan Orlovsky, Nov 28 2010 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 25. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Project Euler, Problem 2: Even Fibonacci Numbers. Index entries for linear recurrences with constant coefficients, signature (5,-3,-1). FORMULA a(n) = (Fibonacci(3*n + 2) - 1)/2 = (A015448(n+1)-1)/2. G.f.: 2*x/((1 - x)*(1 - 4*x - x^2)). a(n) = (F(3n + 2) - 1)/2 = 2 * A049652(n). a(n) = Sum_{0 <= j <= i <= n} binomial(i, j)*F(i + j). - Benoit Cloitre, May 21 2005 a(n) = 4*a(n - 1) + a(n - 2) + 2, n > 1. - Gary Detlefs, Dec 08 2010 a(n) = 5*a(n - 1) - 3*a(n - 2) - a(n - 3), n > 2. - Gary Detlefs, Dec 08 2010 a(n) = (Fibonacci(3*n + 3) + Fibonacci(3*n) - 2)/4. - Gary Detlefs, Dec 08 2010 a(n) = (-10 + (5 - 3*sqrt(5))*(2 - sqrt(5))^n + (2 + sqrt(5))^n*(5 + 3*sqrt(5)))/20. - Colin Barker, Nov 26 2016 MATHEMATICA CoefficientList[Series[2 x/((1 - x) (1 - 4 x - x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *) LinearRecurrence[{5, -3, -1}, {0, 2, 10}, 30] (* G. C. Greubel, Jan 17 2018 *) Accumulate[Fibonacci[3Range[0, 19]]] (* Alonso del Arte, Dec 23 2018 *) PROG (PARI) a(n) = sum(i=1, n, fibonacci(3*i)); \\ Michel Marcus, Mar 15 2014 (PARI) a(n) = fibonacci(3*n+2)\2 \\ Charles R Greathouse IV, Jun 11 2015 (Magma) [(Fibonacci(3*n+2) - 1)/2: n in [0..30]]; // G. C. Greubel, Jan 17 2018 CROSSREFS Partial sums of A014445. Cf. A000045, A004794. Cf. A087635. Case k = 3 of partial sums of fibonacci(k*n): A000071, A027941, A058038, A138134, A053606. Sequence in context: A243965 A218780 A068551 * A100397 A084059 A339642 Adjacent sequences: A099916 A099917 A099918 * A099920 A099921 A099922 KEYWORD nonn,easy AUTHOR Ralf Stephan, Oct 30 2004 EXTENSIONS a(0) = 0 prepended by Joerg Arndt, Mar 13 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 11:25 EST 2023. Contains 367724 sequences. (Running on oeis4.)