|
|
A099920
|
|
a(n) = (n+1)*F(n), F(n) = Fibonacci numbers A000045.
|
|
21
|
|
|
0, 2, 3, 8, 15, 30, 56, 104, 189, 340, 605, 1068, 1872, 3262, 5655, 9760, 16779, 28746, 49096, 83620, 142065, 240812, 407353, 687768, 1159200, 1950650, 3277611, 5499704, 9216519, 15426870, 25793240, 43080608, 71884197, 119835652
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
A Fibonacci-Lucas convolution.
The number of edges in the Lucas cube L_(n+1) [Klavzar]. - R. J. Mathar, Nov 05 2008
a(n-1) is the total binary weight of all bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020
|
|
REFERENCES
|
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 35.
|
|
LINKS
|
Eric Weisstein's World of Mathematics, Edge Count.
|
|
FORMULA
|
G.f.: x*(2-x)/(1-x-x^2)^2;
a(n) = Sum_{k=0..n} F(n-k)*(L(k-1) + 0^k).
a(n) = Sum_{k=0..n+1} F(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2.
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4); a(0)=0, a(1)=2, a(2)=3, a(3)=8. - Harvey P. Dale, Jan 18 2012
|
|
MATHEMATICA
|
Table[(n + 1) Fibonacci[n], {n, 0, 40}] (* Harvey P. Dale, Jan 18 2012 *)
LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 8}, 40] (* Harvey P. Dale, Jan 18 2012 *)
CoefficientList[Series[(2 - x) x/(-1 + x + x^2)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 28 2023 *)
|
|
PROG
|
(Haskell)
a099920 n = a099920_list !! n
a099920_list = zipWith (*) [1..] a000045_list
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Entry revised by N. J. A. Sloane, Jan 23 2006. The offset changed, so some of the formulas may now be slightly off.
|
|
STATUS
|
approved
|
|
|
|