The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099920 a(n) = (n+1)*F(n), F(n) = Fibonacci numbers A000045. 19
 0, 2, 3, 8, 15, 30, 56, 104, 189, 340, 605, 1068, 1872, 3262, 5655, 9760, 16779, 28746, 49096, 83620, 142065, 240812, 407353, 687768, 1159200, 1950650, 3277611, 5499704, 9216519, 15426870, 25793240, 43080608, 71884197, 119835652 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A Fibonacci-Lucas convolution. The number of edges in the Lucas cube L_(n+1) [Klavzar]. - R. J. Mathar, Nov 05 2008 Sums of rows of the triangle in A108037. - Reinhard Zumkeller, Oct 07 2012 a(n-1) is the total binary weight of all bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 35. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 S. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discr. Math. 299 (2005), 145-153. Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018. Steven Finch, Variance of longest run duration in a random bitstring, arXiv:2005.12185 [math.CO], 2020. Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1) FORMULA G.f.: x*(2-x)/(1-x-x^2)^2; a(n) = sum{k=0..n, F(n-k)*(L(k-1)+0^k)}; a(n) = sum{k=0..n+1, F(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2}. a(0)=0, a(1)=2, a(2)=3, a(3)=8, a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4). - Harvey P. Dale, Jan 18 2012 a(n) = a(n-1) + a(n-2) + A000032(n-1) (Lucas numbers). - Bob Selcoe, Aug 19 2015 MATHEMATICA Table[Fibonacci[n](n+1), {n, 0, 40}] (* or *) LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 8}, 40] (* Harvey P. Dale, Jan 18 2012 *) PROG (MAGMA) [(n+1)*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011 (Haskell) a099920 n = a099920_list !! n a099920_list = zipWith (*) [1..] a000045_list -- Reinhard Zumkeller, Oct 07 2012 (PARI) a(n)=(n+1)*fibonacci(n) \\ Charles R Greathouse IV, Jun 11 2015 CROSSREFS Equals A010049(n) + A001629(n+1). Cf. A000045, A000032, A045925, A023607. Sequence in context: A179991 A026698 A099428 * A128022 A011946 A195095 Adjacent sequences:  A099917 A099918 A099919 * A099921 A099922 A099923 KEYWORD nonn,easy AUTHOR Paul Barry and Ralf Stephan, Oct 15 2004 EXTENSIONS Entry revised by N. J. A. Sloane, Jan 23 2006. The offset changed, so some of the formulas may now be slightly off. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 14:14 EDT 2021. Contains 346469 sequences. (Running on oeis4.)