login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023607
a(n) = n * Fibonacci(n+1).
19
0, 1, 4, 9, 20, 40, 78, 147, 272, 495, 890, 1584, 2796, 4901, 8540, 14805, 25552, 43928, 75258, 128535, 218920, 371931, 630454, 1066464, 1800600, 3034825, 5106868, 8580897, 14398412, 24129160, 40388070, 67527579, 112786496, 188195271
OFFSET
0,3
COMMENTS
Convolution of Fibonacci numbers and Lucas numbers.
Central terms of the triangle in A119457 for n>0. - Reinhard Zumkeller, May 20 2006
d/dx(1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + ...) = (1 + 4x + 9x^2 + ...). - Gary W. Adamson, Jun 27 2009
For n > 0: sums of rows of the triangle in A108035. - Reinhard Zumkeller, Oct 08 2012
LINKS
M. Griffiths, A Restricted Random Walk defined via a Fibonacci Process, Journal of Integer Sequences, Vol. 14 (2011), #11.5.4.
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8, section 3.
FORMULA
O.g.f.: x(2x+1)/(1-x-x^2)^2. - Len Smiley, Dec 11 2001
a(n) = n*Sum_{k=0..n} binomial(k,n-k). - Paul Barry, Sep 25 2004
a(n) = A215082(2n-2) + A215082(2n-1). - Philippe Deléham, Aug 03 2012
a(n) = Sum_{i=1..n} A000045(i)*A000032(n-i+1). - Vladimir Kruchinin, Nov 08 2013
MAPLE
A023607 := proc(n)
n*combinat[fibonacci](n+1) ;
end proc:
seq(A023607(n), n=0..10) ; # R. J. Mathar, Jul 15 2017
MATHEMATICA
Times@@@Thread[{Range[0, 50], Fibonacci[Range[51]]}] (* Harvey P. Dale, Mar 08 2011 *)
Table[n*Fibonacci[n + 1], {n, 0, 50}]
PROG
(Haskell)
a023607 n = a023607_list !! n
a023607_list = zipWith (*) [0..] $ tail a000045_list
-- Reinhard Zumkeller, Oct 08 2012
(PARI) a(n)=n*fibonacci(n+1) \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
First differences of A094584.
Second column of triangle A016095.
Sequence in context: A049748 A268235 A192956 * A117074 A072934 A084639
KEYWORD
nonn,easy
EXTENSIONS
Simpler description from Samuel Lachterman (slachterman(AT)fuse.net), Sep 19 2003
Name improved by T. D. Noe, Mar 08 2011
STATUS
approved