

A119457


Triangle read by rows: T(n,1)=n, T(n,2)=(n1)*2 for n>1 and T(n,k)=T(n1,k1)+T(n2,k2) for 2<k<=n.


8



1, 2, 2, 3, 4, 3, 4, 6, 6, 5, 5, 8, 9, 10, 8, 6, 10, 12, 15, 16, 13, 7, 12, 15, 20, 24, 26, 21, 8, 14, 18, 25, 32, 39, 42, 34, 9, 16, 21, 30, 40, 52, 63, 68, 55, 10, 18, 24, 35, 48, 65, 84, 102, 110, 89, 11, 20, 27, 40, 56, 78, 105, 136, 165, 178, 144, 12, 22, 30, 45, 64, 91, 126
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Row sums give A001891; central terms give A023607;
T(n,1) = n;
T(n,2) = A005843(n1) for n>1;
T(n,3) = A008585(n2) for n>2;
T(n,4) = A008587(n3) for n>3;
T(n,5) = A008590(n4) for n>4;
T(n,6) = A008595(n5) for n>5;
T(n,7) = A008603(n6) for n>6;
T(n,n6) = A022090(n5) for n>6;
T(n,n5) = A022089(n4) for n>5;
T(n,n4) = A022088(n3) for n>4;
T(n,n3) = A022087(n2) for n>3;
T(n,n2) = A022086(n1) for n>2;
T(n,n1) = A006355(n+1) for n>1;
T(n,n) = A000045(n+1);


LINKS

Table of n, a(n) for n=1..73.
Eric Weisstein's World of Mathematics, Fibonacci Number


FORMULA

T(n,n) = (n+1)th Fibonacci number, T(n,k) = (nk+1)*T(k,k) for 1<=k<n.


CROSSREFS

Sequence in context: A216622 A003991 A131923 * A241356 A065157 A235804
Adjacent sequences: A119454 A119455 A119456 * A119458 A119459 A119460


KEYWORD

nonn,tabl


AUTHOR

Reinhard Zumkeller, May 20 2006


STATUS

approved



