OFFSET
1,2
COMMENTS
T(n,1) = n;
T(n,2) = A005843(n-1) for n>1;
T(n,3) = A008585(n-2) for n>2;
T(n,4) = A008587(n-3) for n>3;
T(n,5) = A008590(n-4) for n>4;
T(n,6) = A008595(n-5) for n>5;
T(n,7) = A008603(n-6) for n>6;
T(n,n-6) = A022090(n-5) for n>6;
T(n,n-5) = A022089(n-4) for n>5;
T(n,n-4) = A022088(n-3) for n>4;
T(n,n-3) = A022087(n-2) for n>3;
T(n,n-2) = A022086(n-1) for n>2;
T(n,n-1) = A006355(n+1) for n>1;
T(n,n) = A000045(n+1);
LINKS
Eric Weisstein's World of Mathematics, Fibonacci Number
FORMULA
T(n,n) = (n+1)-th Fibonacci number, T(n,k) = (n-k+1)*T(k,k) for 1<=k<n.
MATHEMATICA
T[n_, 1] := n;
T[n_ /; n > 1, 2] := 2 n - 2;
T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 01 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, May 20 2006
STATUS
approved