login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,1)=n, T(n,2)=(n-1)*2 for n>1 and T(n,k)=T(n-1,k-1)+T(n-2,k-2) for 2<k<=n.
8

%I #8 Dec 01 2021 07:48:13

%S 1,2,2,3,4,3,4,6,6,5,5,8,9,10,8,6,10,12,15,16,13,7,12,15,20,24,26,21,

%T 8,14,18,25,32,39,42,34,9,16,21,30,40,52,63,68,55,10,18,24,35,48,65,

%U 84,102,110,89,11,20,27,40,56,78,105,136,165,178,144,12,22,30,45,64,91,126,170,220,267,288,233

%N Triangle read by rows: T(n,1)=n, T(n,2)=(n-1)*2 for n>1 and T(n,k)=T(n-1,k-1)+T(n-2,k-2) for 2<k<=n.

%C Row sums give A001891; central terms give A023607;

%C T(n,1) = n;

%C T(n,2) = A005843(n-1) for n>1;

%C T(n,3) = A008585(n-2) for n>2;

%C T(n,4) = A008587(n-3) for n>3;

%C T(n,5) = A008590(n-4) for n>4;

%C T(n,6) = A008595(n-5) for n>5;

%C T(n,7) = A008603(n-6) for n>6;

%C T(n,n-6) = A022090(n-5) for n>6;

%C T(n,n-5) = A022089(n-4) for n>5;

%C T(n,n-4) = A022088(n-3) for n>4;

%C T(n,n-3) = A022087(n-2) for n>3;

%C T(n,n-2) = A022086(n-1) for n>2;

%C T(n,n-1) = A006355(n+1) for n>1;

%C T(n,n) = A000045(n+1);

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>

%F T(n,n) = (n+1)-th Fibonacci number, T(n,k) = (n-k+1)*T(k,k) for 1<=k<n.

%t T[n_, 1] := n;

%t T[n_ /; n > 1, 2] := 2 n - 2;

%t T[n_, k_] /; 2 < k <= n := T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2];

%t Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 01 2021 *)

%K nonn,tabl

%O 1,2

%A _Reinhard Zumkeller_, May 20 2006