This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022086 Fibonacci sequence beginning 0, 3. 25
 0, 3, 3, 6, 9, 15, 24, 39, 63, 102, 165, 267, 432, 699, 1131, 1830, 2961, 4791, 7752, 12543, 20295, 32838, 53133, 85971, 139104, 225075, 364179, 589254, 953433, 1542687, 2496120, 4038807, 6534927, 10573734, 17108661, 27682395, 44791056, 72473451, 117264507 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS First differences of A111314. - Ross La Haye, May 31 2006 Pisano period lengths: 1, 3, 1, 6, 20, 3, 16, 12, 8, 60, 10, 6, 28, 48, 20, 24, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012 REFERENCES A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 7,17. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (1, 1). FORMULA a(n) = round( ((6*phi-3)/5) * phi^n ) for n>2. - Thomas Baruchel, Sep 08 2004 a(n) = 3*F(n). Also, a(n) = F(n-2) + F(n+2) for n>1, with F=A000045. a(n) = A119457(n+1,n-1) for n>1. - Reinhard Zumkeller, May 20 2006 G.f.: 3*x/(1-x-x^2). - Philippe Deléham, Nov 19 2008 a(n) = A187893(n) - 1. - Filip Zaludek, Oct 29 2016 E.g.f.: 6*sinh(sqrt(5)*x/2)*exp(x/2)/sqrt(5). - Ilya Gutkovskiy, Oct 29 2016 a(n) = F(n+4) + F(n-4) - 4*F(n). - Bruno Berselli, Dec 29 2016 MAPLE BB := n->if n=0 then 3; > elif n=1 then 0; > else BB(n-2)+BB(n-1); > fi: > L:=[]: for k from 1 to 34 do L:=[op(L), BB(k)]: od: L; # Zerinvary Lajos, Mar 19 2007 with (combinat):seq(sum((fibonacci(n, 1)), m=1..3), n=0..32); # Zerinvary Lajos, Jun 19 2008 MATHEMATICA LinearRecurrence[{1, 1}, {0, 3}, 40] (* Arkadiusz Wesolowski, Aug 17 2012 *) Table[Fibonacci[n + 4] + Fibonacci[n - 4] - 4 Fibonacci[n], {n, 0, 40}] (* Bruno Berselli, Dec 30 2016 *) Table[3 Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Dec 31 2016 *) PROG (PARI) a(n)=3*fibonacci(n) \\ Charles R Greathouse IV, Nov 06 2014 (MAGMA) [3*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016 CROSSREFS Essentially the same as A097135. Cf. A026390, A036999. Cf. sequences with formula Fibonacci(n+k)+Fibonacci(n-k) listed in A280154. Sequence in context: A035528 A050337 * A097135 A274498 A167786 A167787 Adjacent sequences:  A022083 A022084 A022085 * A022087 A022088 A022089 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.