login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022093
Fibonacci sequence beginning 0, 10.
2
0, 10, 10, 20, 30, 50, 80, 130, 210, 340, 550, 890, 1440, 2330, 3770, 6100, 9870, 15970, 25840, 41810, 67650, 109460, 177110, 286570, 463680, 750250, 1213930, 1964180, 3178110, 5142290, 8320400, 13462690, 21783090, 35245780, 57028870, 92274650, 149303520, 241578170
OFFSET
0,2
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
FORMULA
a(n) = 10*F(n) = F(n+4) + F(n+2) + F(n-2) + F(n-4) for n>3, where F = A000045.
a(n) = round( (4*phi-2)*phi^n) for n>4. - Thomas Baruchel, Sep 08 2004
G.f.: 10*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = F(n+5) + F(n-5) - 5*F(n) for n>0. - Bruno Berselli, Dec 29 2016
a(n) = Lucas(n+3) + Lucas(n-3), where Lucas(-i) = (-1)^i*Lucas(i) for the negative indices. - Bruno Berselli, Jun 13 2017
MATHEMATICA
LinearRecurrence[{1, 1}, {0, 10}, 40] (* Bruno Berselli, Dec 30 2016 *)
Table[Fibonacci[n + 5] + Fibonacci[n - 5] - 5 Fibonacci[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *)
Table[10 Fibonacci[n], {n, 0, 100}] (* Vincenzo Librandi, Dec 31 2016 *)
PROG
(Magma) [10*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
CROSSREFS
Cf. A000045.
Sequence in context: A168461 A309464 A368362 * A332874 A076817 A324494
KEYWORD
nonn,easy
AUTHOR
STATUS
approved