OFFSET
0,2
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (1,1).
FORMULA
a(n) = 10*F(n) = F(n+4) + F(n+2) + F(n-2) + F(n-4) for n>3, where F = A000045.
a(n) = round( (4*phi-2)*phi^n) for n>4. - Thomas Baruchel, Sep 08 2004
G.f.: 10*x/(1 - x - x^2). - Philippe Deléham, Nov 20 2008
a(n) = F(n+5) + F(n-5) - 5*F(n) for n>0. - Bruno Berselli, Dec 29 2016
a(n) = Lucas(n+3) + Lucas(n-3), where Lucas(-i) = (-1)^i*Lucas(i) for the negative indices. - Bruno Berselli, Jun 13 2017
MATHEMATICA
LinearRecurrence[{1, 1}, {0, 10}, 40] (* Bruno Berselli, Dec 30 2016 *)
Table[Fibonacci[n + 5] + Fibonacci[n - 5] - 5 Fibonacci[n], {n, 1, 40}] (* Bruno Berselli, Dec 30 2016 *)
Table[10 Fibonacci[n], {n, 0, 100}] (* Vincenzo Librandi, Dec 31 2016 *)
PROG
(Magma) [10*Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Dec 31 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved