This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022096 Fibonacci sequence beginning 1, 6. 16
 1, 6, 7, 13, 20, 33, 53, 86, 139, 225, 364, 589, 953, 1542, 2495, 4037, 6532, 10569, 17101, 27670, 44771, 72441, 117212, 189653, 306865, 496518, 803383, 1299901, 2103284, 3403185, 5506469, 8909654, 14416123, 23325777, 37741900, 61067677, 98809577, 159877254 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n-1) = sum_{k=0..ceiling((n-1)/2)} P(6;n-1-k,k), n>=1, with a(-1)=5. These are the sums of the SW-NE diagonals in P(6;n,k), the (6,1) Pascal triangle A093563. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also sums of SW-NE diagonals in (1,5)-Pascal triangle A096940. Subsequence of primes: 7, 13, 53, 139, 953, 44771, 189653, 1494692464747, ... - R. J. Mathar, Aug 09 2012 a(n) is the sum of seven consecutive Fibonacci numbers. a(n) = F(n-4) + F(n-3) + F(n-2) + F(n-1) + F(n) + F(n+1) + F(n+2), where F(n)=A000045(n), extended so that F(-1)=1, F(-2)=-1, F(-3)=2, and F(-4)=-3. - Graeme McRae, Apr 24 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Jia Huang, Hecke algebras of simply-laced type with independent parameters, arXiv:1902.11139 [math.RT], 2019. Tanya Khovanova, Recursive Sequences José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014. J. L. Ramírez, G. N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014). Index entries for linear recurrences with constant coefficients, signature (1,1). FORMULA a(n) = a(n-1) + a(n-2), n>=2, a(0)=1, a(1)=6. G.f.: (1+5*x)/(1-x-x^2). Row sums of triangle A131777. - Gary W. Adamson, Jul 14 2007 a(n) = 5*Fibonacci(n+2) - 4*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010 a(n) = (2^(-1-n)*((1 - sqrt(5))^n*(-11 + sqrt(5)) + (1 + sqrt(5))^n*(11 + sqrt(5))))/sqrt(5). - Herbert Kociemba a(n) = 6*A000045(n) + A000045(n-1). - Paolo P. Lava, May 18 2015 MAPLE with(combinat):  P:=proc(q) local n; for n from 0 to q do print(6*fibonacci(n)+fibonacci(n-1)); od; end: P(10^2); # Paolo P. Lava, May 18 2015 MATHEMATICA CoefficientList[Series[(1 + 5 x)/(1 - x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Apr 25 2014 *) PROG (MAGMA) a0:=1; a1:=6; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013 (PARI) a(n)=([0, 1; 1, 1]^n*[1; 6])[1, 1] \\ Charles R Greathouse IV, Jan 29 2016 CROSSREFS a(n) = A101220(5, 0, n+1). a(n) = A109754(5, n+1). Cf. A000045, A131777. Sequence in context: A154662 A277567 A070398 * A041175 A041074 A041749 Adjacent sequences:  A022093 A022094 A022095 * A022097 A022098 A022099 KEYWORD nonn,easy AUTHOR EXTENSIONS Spelling correction by Jason G. Wurtzel, Aug 22 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 07:11 EDT 2019. Contains 328336 sequences. (Running on oeis4.)