login
A109754
Matrix defined by: a(i,0) = 0, a(i,j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0; read by ascending antidiagonals.
28
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 3, 0, 1, 4, 4, 5, 5, 0, 1, 5, 5, 7, 8, 8, 0, 1, 6, 6, 9, 11, 13, 13, 0, 1, 7, 7, 11, 14, 18, 21, 21, 0, 1, 8, 8, 13, 17, 23, 29, 34, 34, 0, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 0, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
OFFSET
0,9
COMMENTS
Lower triangular version is at A117501. - Ross La Haye, Apr 12 2006
FORMULA
a(i, 0) = 0, a(i, j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0.
a(i, 0) = 0, a(i, 1) = 1, a(i, 2) = i+1, a(i, j) = a(i, j-1) + a(i, j-2), for j > 2.
G.f.: (x*(1 + ix))/(1 - x - x^2).
Sum_{j=0..i+1} a(i-j+1, j) - Sum_{j=0..i} a(i-j, j) = A001595(i). - Ross La Haye, Jun 03 2006
EXAMPLE
Table starts:
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
[1] 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
[2] 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, ...
[3] 0, 1, 4, 5, 9, 14, 23, 37, 60, 97, ...
[4] 0, 1, 5, 6, 11, 17, 28, 45, 73, 118, ...
[5] 0, 1, 6, 7, 13, 20, 33, 53, 86, 139, ...
[6] 0, 1, 7, 8, 15, 23, 38, 61, 99, 160, ...
[7] 0, 1, 8, 9, 17, 26, 43, 69, 112, 181, ...
[8] 0, 1, 9, 10, 19, 29, 48, 77, 125, 202, ...
[9] 0, 1, 10, 11, 21, 32, 53, 85, 138, 223, ...
MAPLE
A := (n, k) -> ifelse(k = 0, 0,
n*combinat:-fibonacci(k-1) + combinat:-fibonacci(k)):
seq(seq(A(n - k, k), k = 0..n), n = 0..6); # Peter Luschny, May 28 2022
MATHEMATICA
T[n_, 0]:= 0; T[n_, 1]:= 1; T[n_, 2]:= n - 1; T[n_, 3]:= n - 1; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
CROSSREFS
Rows: A000045(j); A000045(j+1), for j > 0; A000032(j), for j > 0; A000285(j-1), for j > 0; A022095(j-1), for j > 0; A022096(j-1), for j > 0; A022097(j-1), for j > 0. Diagonals: a(i, i) = A094588(i); a(i, i+1) = A007502(i+1); a(i, i+2) = A088209(i); Sum[a(i-j, j), {j=0...i}] = A104161(i). a(i, j) = A101220(i, 0, j).
Rows 7 - 19: A022098(j-1), for j > 0; A022099(j-1), for j > 0; A022100(j-1), for j > 0; A022101(j-1), for j > 0; A022102(j-1), for j > 0; A022103(j-1), for j > 0; A022104(j-1), for j > 0; A022106(j-1), for j > 0; A022107(j-1), for j > 0; A022108(j-1), for j > 0; A022109(j-1), for j > 0; A022110(j-1), for j > 0.
a(2^i-2, j+1) = A118654(i, j), for i > 0.
Cf. A117501.
Sequence in context: A167637 A343489 A360742 * A374395 A220074 A059259
KEYWORD
nonn,tabl
AUTHOR
Ross La Haye, Aug 11 2005; corrected Apr 14 2006
EXTENSIONS
More terms from G. C. Greubel, Jan 07 2017
STATUS
approved