OFFSET
1,2
COMMENTS
Denominators of convergents of the continued fraction with the n partial quotients: [1;1,1,...(n-1 1's)...,1,n], starting with [1], [1;2], [1;1,3], [1;1,1,4], ... Numerators are A088209(n-1). - Paul D. Hanna, Sep 23 2003
REFERENCES
Les Marvin, Problem, J. Rec. Math., Vol. 10 (No. 3, 1976-1977), p. 213.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..500
Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
FORMULA
G.f.: (1-x^2+x^3)/(1-x-x^2)^2. - Paul D. Hanna, Sep 23 2003
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>3, a(0)=1, a(1)=2, a(2)=4, a(3)=9. - Harvey P. Dale, Jul 13 2011
EXAMPLE
a(7) = F(7)+6*F(6) = 13+6*8 = 61.
MATHEMATICA
Table[Fibonacci[n]+(n-1)*Fibonacci[n-1], {n, 40}] (* or *) LinearRecurrence[ {2, 1, -2, -1}, {1, 2, 4, 9}, 40](* Harvey P. Dale, Jul 13 2011 *)
f[n_] := Denominator@ FromContinuedFraction@ Join[ Table[1, {n}], {n + 1}]; Array[f, 30, 0] (* Robert G. Wilson v, Mar 04 2012 *)
PROG
(Haskell)
a007502 n = a007502_list !! (n-1)
a007502_list = zipWith (+) a045925_list $ tail a000045_list
-- Reinhard Zumkeller, Oct 01 2012, Mar 04 2012
(PARI) Vec((1-x^2+x^3)/(1-x-x^2)^2+O(x^99)) \\ Charles R Greathouse IV, Mar 04, 2012
(Julia) # The function 'fibrec' is defined in A354044.
function A007502(n)
n == 0 && return BigInt(1)
a, b = fibrec(n-1)
(n-1)*a + b
end
println([A007502(n) for n in 1:32]) # Peter Luschny, May 18 2022
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved