login
A354044
a(n) = 2*(-i)^n*(n*sin(c*(n+1)) - i*sin(-c*n))/sqrt(5) where c = arccos(i/2).
7
0, 2, 5, 11, 23, 45, 86, 160, 293, 529, 945, 1673, 2940, 5134, 8917, 15415, 26539, 45525, 77842, 132716, 225685, 382877, 648165, 1095121, 1846968, 3109850, 5228261, 8777315, 14716223, 24643389, 41220110, 68873848, 114964805, 191719849, 319436697, 531789785
OFFSET
0,2
FORMULA
a(n) = [x^n] ((2 - x)*x*(x + 1))/(x^2 + x - 1)^2.
a(n) = (((-1 - sqrt(5))^(-n)*(sqrt(5)*n - n - 2) + (-1 + sqrt(5))^(-n)*(sqrt(5)*n + n + 2)))/(2^(1 - n)*sqrt(5)).
a(n) = (-1)^(n - 1)*(Fibonacci(-n) - n*Fibonacci(-n - 1)).
a(n) = (-1)^(n - 1)*A353595(-n, -n). (A353595 is defined for all n in Z.)
a(n) = ((-42*n^2 + 259*n - 350)*a(n - 3) + (123*n^2 - 76*n - 446)*a(n - 2) + (207*n^2 - 885*n + 412)*a(n - 1)) / ((165*n - 542)*(n - 1)) for n >= 4.
a(n) = Fibonacci(n) + n*Fibonacci(n+1). - Jianing Song, May 16 2022
MAPLE
c := arccos(I/2): a := n -> 2*(-I)^n*(n*sin(c*(n+1)) - I*sin(-c*n))/sqrt(5):
seq(simplify(a(n)), n = 0..35);
PROG
(Julia)
function fibrec(n::Int)
n == 0 && return (BigInt(0), BigInt(1))
a, b = fibrec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
function A354044(n)
n == 0 && return BigInt(0)
a, b = fibrec(n + 1)
a*(n - 1) + b
end
println([A354044(n) for n in 0:35])
(PARI) a(n) = fibonacci(n) + n*fibonacci(n+1) \\ Jianing Song, May 16 2022
CROSSREFS
Cf. A000045 (the Fibonacci numbers), A007502, A088209, A094588, A136391, A178521, A264147, A353595.
Sequence in context: A064934 A227637 A171985 * A005986 A333396 A277828
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, May 16 2022
STATUS
approved